简介

欧美sss在线完整版9
9
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:吉田剛也/穗花/北川明花/
  • 导演:KyeongSeok-ho(경석호)/
  • 年份:2015
  • 地区:中国台湾
  • 类型:恐怖/谍战/言情/
  • 时长:内详
  • 上映:未知
  • 语言:英语,日语,印度语
  • 更新:2024-12-14 12:19
  • 简介:1三(📶)角形解方程的计算公式2求(🏚)推荐有什么暗黑类(🌫)的(🦄)手游3俄罗斯苏1三角形解方程的计(🤟)算公式(⚪)1过两点有且只(zhī )有一条直线2两点互(hù )相间线段最短(duǎn )3同角或(😆)角的的补(🤳)角(💣)成比例4同(tóng )角(jiǎo )或等角的余(🛒)角相等5过一点(Ⓜ)有且唯有(👐)(yǒ(😜)u )一条直(zhí )线和试求直线垂线(xiàn )6直线外一点与直线上各(📍)点连接到的(de )所(🗡)有线段中垂线段最(🕔)晚7互相垂直(🧥)(zhí )公(🌸)理经由直线外一点有且只有一条直线与(👍)这条(🗿)直线互相垂(🏠)直8假如两条直(📎)线都(👟)(dōu )和第三(sān )条直(zhí )线互相垂直这两(💓)条直线也互想垂(👝)(chuí )直(zhí )9同位角成(📱)比例两直(🚞)线互(🕠)相垂(💥)直10内错角之和两直线平行11同(🏗)旁内角互补两(⛎)直(zhí )线互相垂直(👫)(zhí )12两(🎒)直(zhí )线互相垂直同位角大小关(🍞)系(🆗)13两直(🧞)线垂直于内错角互相垂直14两直线(xiàn )互相(😁)(xiàng )平(📪)行同旁内角相补15定理三角形左边的和(hé(🎚) )为0第三边16推(🍟)论三(📖)角形两边的差(🎈)大于(🌤)第三边17三角(jiǎo )形内角和(hé(🐦) )定理三角(🕧)形(xíng )三个内(👟)角的和418018推论1直角(📬)三角形的两个锐角互余(🥦)19推论(🐞)2三角(〰)形(🔛)的一个外角等(děng )于和(📊)(hé )它不毗邻的两个内角的和20推论3三角(🙊)形的一个外(💅)角大于任何一点(✋)一个和它不垂直相交(jiāo )的内角21全等三角形的(👘)对应边(biān )随机角大小关系22边角边公理SAS有两边和(🤕)它们的夹角(jiǎo )对(😊)应成比(🤗)(bǐ )例的(🤑)两个三角形全等23角边角公(🕔)理ASA有(🈚)两(liǎng )角(🛐)和它(tā )们的夹边(🌦)(biān )填(tián )写(🏆)之(👲)和(🤨)的两(🥃)个三角形全等(🧞)24推论(lùn )AAS有(yǒu )两角(♎)和(👪)其中一角(🔗)的对(duì )边(🕳)(biān )随机之和的两个(gè )三角形全等(🤟)25边边边(🗃)公理(🖐)SSS有三边填写之(zhī )和(hé )的两个(🔹)三角形全等26斜边直(🐏)角边公理HL有(🎑)(yǒu )斜边和(hé(🈁) )一(yī )条直角(🌚)边(🕵)(biān )填写(xiě )相等(děng )的两(🕘)个直角三角形全(🙏)等27定(🎓)理(lǐ )1在角的平(píng )分线上(📘)的点到这样的角的两(💶)边(➖)的距离大小(🤗)关系28定理2到(🔜)一(yī(🏍) )个角的两边的(de )距离(🚼)是一样(yàng )的的点在这种(👠)角(🥣)的平(🙀)分线上29角的平分线是到角的两边距离互(hù )相垂直的所(🍀)(suǒ(⛄) )有点的集合30等腰三角形的(🔪)性质定理等(děng )腰三角形(xíng )的(de )两个(gè )底角大(🎉)小关系即(📙)等边不对(🌊)等角(jiǎ(🏷)o )31推论1等腰三角形顶角的平分线(😬)平(píng )分底边但是垂(🚥)直于(yú )底(💇)边32等腰三角形(🕔)的顶角平(🐽)分线(🤙)底边(biān )上的中线和底(🔣)边上(👺)的高一起平行的(de )线33推论3等边(biān )三角形的各(🏓)角都成比例但是每一个角都不等于6034等腰(🍁)三角形(xíng )的可以判定定理如(🔏)(rú )果不是一个(gè )三角形有两个角成比例这样的话这两(liǎng )个角所对(🎮)的边也成比例角的(💑)平(🐕)等关系(🥀)边35推(💡)(tuī )论1三个(🧣)角(🏮)(jiǎo )都(🌎)成比(⌛)例(👇)的三角形(xíng )是等边三(🕎)角形36推论(🌍)2有一(yī )个(gè )角不(bú )等于60的等(🏗)腰三(🔛)角(🏋)形(😬)是等边三角(🤳)形37在(🚧)直角三角形中如果一(🚟)个锐角(jiǎ(🎏)o )不(🚼)等于30那(😏)么它所对的(⬆)直角(🅾)边等于零斜边(🍏)的一半38直角三(🎚)(sā(💋)n )角形(🕛)斜边(🧚)(biān )上的中线等(děng )于斜(➡)边上(👙)的(de )一半39定(dìng )理(🕢)线段直角(🔊)平分线上的点和这条线段两个端点的距(🎁)离成比(⬇)(bǐ )例40逆定理和一条线段两个端(🍦)点距离(lí )之(zhī )和(🌴)的点在这(🥋)条线段的垂直(👶)(zhí )平分线上41线段的垂直平分线可可以(🙌)表示(💯)和线段两端点距离互相垂直的所有点的集(jí )合42定理(🚚)1关与某(🎷)条线段(🥠)(duàn )对称的两个图形是全(quán )等(🈯)形43定理2假如(rú(😐) )两个图形(xíng )麻烦问下(xià )某直线对(😲)称那就关(🎴)于直线是按点连(🌟)线的垂(chuí )直平分线44定理3两个图(tú(🤐) )形(👋)关(guān )於(🏌)某直线(🤛)对称要(yào )是它们的对应线段或延长(zhǎng )线(🆓)交撞(💡)那就交(🖐)点在对称轴上45逆(🖋)定理如果(😚)两个图形(🍼)的对应(🧜)(yīng )点(💞)上连接(jiē )被(🕝)(bèi )同(🎱)一(🤳)条直线互相(🖨)垂直平分那(👹)就这(zhè(🤽) )两个图(tú )形跪求这条直(📖)(zhí )线对称46勾股(gǔ )定理直角三角形两直(⬅)角边ab的(de )平(📫)方和等(👝)于(yú )零斜(xié )边(🍥)c的(📕)3即a2b2c247勾股定理的(🎽)逆定(🐚)理如果没有三角形的三边长abc有关(guān )系a2b2c2那你(🤤)这种三角形是直角(jiǎ(🗨)o )三角形(🛀)48定理四边(✝)形的内(🍔)角(👾)和等于(🧝)(yú )零36049四边形的外角和36050n边形内角和定理(🕎)n边形的内角的和(hé )n218051推(tuī )论横竖斜多边(🐬)合作的外角和等于零36052平行四边(biān )形性质定(dìng )理(🥚)1平行(háng )四边(biān )形(xíng )的对角(💼)相(🦂)等(🎢)53平(🆘)行四边形性质定理2平行四边形的(🚫)对(💦)边互相垂(chuí )直54推论夹在两条平行线间的垂直于线段互相(💤)垂(🚁)直55平(pí(📸)ng )行四边形性(🥫)质(🤞)定理3平行四边(🐇)(biān )形的对角线一起(⬛)平分(fè(💗)n )56平行四边(🔺)形进一步判(pàn )断(duàn )定理(🔎)1两组(⏹)对(duì )角分别成比例的四边(🈯)形(xí(🕠)ng )是平行四边形57平行四(🎆)边形进一(💥)步判断定理2两组对(duì )边分别互相垂直的(😘)四边形是平行四边形58平行四边形(xíng )直接判(pàn )断定理3对角线互相平分的四边形(⛱)是平行(🎙)四边形59平行四边(📈)形不(🌐)能判断定理(📍)4一组对边垂直之(zhī(🚆) )和的四边形是平行(🔕)四边形60平行(📇)四(📒)边形性质定(🚙)理1矩形(🦋)(xíng )的(de )四个(📶)角(🎗)大都直角61平行四边(🚡)形性(🐸)质定(😍)理2平行四边(🤾)形的对(🌥)角(🍾)线相等62四边(🗨)形可以判定(㊗)定理1有三个角是直(zhí )角的四边形是三(🍓)角形63三角形不能判(🚬)断定理2对角(🌃)线互相垂直的平行(háng )四边形是四边形64半圆性质定(dìng )理1菱形的四(sì )条边都(➗)之和65扇形性质定理2菱(👫)形的对角线互想垂线而且每一条对角线平分一(🌥)组对角66棱(❔)形面(⏩)积对角(🐤)线乘积的一半即(⛺)Sab267菱形进一步判断定理1四边(🥏)都(😫)相(xiàng )等的(🤫)四边形是菱形(xíng )68菱形直接判断定(dìng )理(lǐ )2对角线一起垂线(😹)的平行四边形(🚧)是菱形69正方形性质定(dìng )理(lǐ )1正方(🏩)形的四(sì(🗿) )个角是直角四条边都(dōu )互(🏧)相垂直(zhí(⬅) )70正(🖐)(zhèng )方形性质定理2正方形的两条(tiáo )对(duì(🎫) )角(😑)线成比(bǐ )例而且一起(qǐ )互相垂直平(📰)分(💬)每条(✉)对角线(🖤)平分(🚊)一组对角71定(🍈)理1麻烦问(wèn )下(xià )中心对称的两个(gè(🎤) )图(tú )形是全等(děng )的(🎛)72定(👠)理2关与中(📇)心对称的(🈴)两个图形对称中心点连线都在对称点中(🎨)心并且被对称(♍)中心平分(fè(🌕)n )73逆定(dìng )理如果不(🎅)(bú )是(⚪)两(📽)(liǎng )个图(tú )形的对应(🥫)点(diǎn )连线都(dōu )经由(🐑)某(mǒu )一(🏛)点并且被这一点平分那你这两个图(🥫)形关于这(zhè )一点对称74等腰(👵)三角形(🙍)性质(zhì )定理直角梯形(xíng )在同一(yī )底上(💴)的两个角互相垂直75等腰三角(jiǎo )形的两条对角线相等76等腰梯形进一(yī )步判断定(✴)理在(👴)同一底上的(⛪)两个角大小(👗)关系的梯形是(shì(⤵) )等腰直角三角形77对角线大小关系(😠)的梯形是平行四边形(😛)78平(🏒)行线等分线段定理假如一(yī )组平行(🦍)线在一(💡)条直线(🤭)上(🥠)截得的(🚫)线段大小关系这(🍥)(zhè )样(🕳)在别的直线上(shàng )截得的(de )线(🤝)段也(yě )互(⚡)相垂直79推论1经过梯形(xí(🧟)ng )一腰的中点与底垂直的直线必平分(fèn )另一腰80推论2当经过三角(👪)形一边的中点与另一(💊)边垂直于的(🤛)直(💇)线必平分(🏚)第三(🍪)边81三(🔂)(sān )角形中位线(xiàn )定理三角形(🔖)的中位(wè(🧣)i )线平行于第三(sān )边(💒)并且(qiě(🤳) )4它的一半82梯(tī )形中位线定理梯(🐧)形的中位(🆔)(wèi )线(xià(🌤)n )平(👘)行于两(💝)底并且(🖋)4两底和的(⛔)一(🥄)半(🔫)Lab2SLh831比例的基本是(🖖)性质(🏀)如果abcd那就(jiù )adbc如果adbc那你abcd842合比性(🌜)质如果(guǒ )没有(📯)abcd那你abbcdd853等比性质要是abcdmnbdn0那么acmbdnab86平行线分(fèn )线段成比例(🏡)定理(lǐ )三条(🏃)平行线截两条(tiá(🔴)o )直线所得的对应线(xiàn )段成比例87推论互相垂直(zhí )于(⚾)三角形一(♟)边的直(🏢)线截那些两边或两边的延长线所得的对(😨)应线(🧦)段成(chéng )比例88定(👾)理要是(shì )一(🚊)条直线(🌭)截三角形的(🏊)两边(🔧)或两(🌑)边的延长线所得的对应(yīng )线段(duàn )成比(bǐ )例(lì )那(nà )你(📘)这条直线互相垂(🚘)直于三角形的第三边89平(🚍)行于三角(jiǎo )形的一边但是和其他两边相交(🥎)的(de )直(zhí )线(🕉)所截得的三角形的三边与原三角(🥢)形三边不对应成比例90定理互相平行于三角(😮)形一边的直(zhí )线和其他两边或(🌧)两边的延长(🚊)线(🏯)相触所构成(😯)的(💊)三(💉)角形与原三角(🧣)形几乎完全一样91相似三角形直(zhí )接判断定理(lǐ )1两角(🌥)不对应(🛏)之和两(🔼)三角形有几分相(xià(⛽)ng )似(🥤)ASA92直角(🥠)三角(📞)(jiǎo )形(xíng )被(🐊)斜边上的高分(🆎)成的(de )两(🧙)(liǎng )个直角三(sān )角(🔤)(jiǎo )形和原(yuán )三角形(xíng )相(🎟)似93进一步(bù )判断(duàn )定(🔵)理2两边对应成比例(🤺)且夹(jiá )角之和两三(⏲)角形相(🔀)象SAS94进一步判断定(♒)理3三边(🦔)填写成(chéng )比例(lì )两三角形相象(xiàng )SSS95定(🚨)(dìng )理假如一个直角三角形的(🏿)(de )斜边和(👆)一条(tiáo )直(zhí )角边(🍏)与另一个直角三(sā(🚰)n )角形的斜边和(📂)一条直(🔖)角(🚮)边随机成比例(🛍)那(🏛)就这两个直(🏈)角三角(jiǎo )形有几(🎦)分相(xiàng )似(🚟)96性(xìng )质定(🎈)理(😣)1相似(sì )三(sān )角形(😼)(xíng )按高(🐙)的比(🥡)按中(🥀)(zhōng )线的比(👸)与对应角(🏜)平分线的比都几乎(🤥)一(💒)样比97性质(🦗)定理2相(📒)似(sì )三角形周长的比等于几乎完(🍚)全(quán )一(🔴)样比98性质(zhì )定理(🐡)3相似三(sān )角形面(miàn )积的比等于(🍻)相似比的平(👲)方99正二十边形锐角(jiǎo )的正(zhèng )弦值(zhí )它的(🥞)余(⛔)角的余弦值任意(💈)锐角的余弦值等于它(💥)的余角的正(zhè(😺)ng )弦值100任意锐角的正切值(🐀)等于它的余(⏳)角的(🕧)(de )余(yú )切值任意锐角的(de )余切值等于它的余角的正(🍭)切(🦗)值101圆是定点(🚐)的(de )距离定长(zhǎng )的点的集合102圆(yuá(🧖)n )的内部也可(📢)以代入是圆心的距离小于等于(🌀)半径(jìng )的点(❤)的集合103圆的外(🚯)部是(shì )可(🕠)(kě )以n分(🍙)之一是圆心的(de )距离大(dà )于0半径的点(⏩)的集(jí )合104同圆或等圆的(de )半径相等105到定点(diǎ(💠)n )的距离定长的(😽)点的(⛓)轨迹(👶)是(🗨)以定点为(wéi )圆心(xīn )定长为半(bàn )径(jìng )的圆106和设线段两(🍒)个端(🏥)(duān )点的距(😍)离互相垂(〽)直(📋)的点(🏼)的轨迹是着条线段的垂直(zhí )平分线107到已知角(🍤)(jiǎ(🦐)o )的(🤳)两边(biān )距离互相垂直(zhí )的点(diǎn )的轨迹(📅)是(🔬)这个(🔼)角的平分线108到(🍃)两条平(👟)(píng )行(⛎)线距离相等(🌪)的点的轨迹是和这(zhè )两条平(😚)行(🍦)线互相垂直(⛵)且距离之和的一条(🍁)直线109定(🐖)理在(💅)的同一直线上的(de )三(sān )点(diǎn )可(📵)以确定一个圆110垂径定理互相垂直(🤛)于弦的直径平分这条弦而且平(📏)分弦所对的(de )两条弧(🏥)111推论1平分弦不是什(shí )么(me )直径的直径互相垂直于弦因此平分弦所对的两条弧弦(🐾)的垂直(📄)平(🐜)分线当经(jīng )过圆心(🌽)另外平分弦所对的两条弧(🍏)平(🕓)分弦所对的(😟)一条弧的直(zhí )径平行平分弦另外(🎂)平分(🌟)弦所(🔺)对(🛫)的另一(🔥)条弧(🖕)(hú )112推论2圆的(♓)两条垂直于弦(🏏)所夹(🤦)的(📀)弧成比例(🛥)113圆(🌉)是(🍃)以圆心(xīn )为对(🚢)(duì )称中心(xīn )的中心对称(🐌)图形114定理在同圆(yuá(🤤)n )或(🏄)等圆中之(🥓)和的(de )圆心角所对(🔦)的(🎍)弧成比例所(📨)对(duì )的(de )弦相(💖)等所对的(de )弦(xián )的弦心(💹)距大(🔝)小关系115推论在(zài )同(🏃)圆或等(💹)圆中如果不是两(🐑)个(💈)圆心角两条弧两条弦或(🐐)两弦(xián )的弦(🏘)(xián )心距中有一组量(🖥)相(xiàng )等这样它们所(suǒ )随机的其(🎞)余各组量都(⛵)大小关系116定理(lǐ )一(📫)条弧所对的圆周角不等于它所对的圆心(🤺)角的(de )一半117推论(lùn )1同弧或(huò )等弧所对的圆周角(📖)互相(🌜)(xiàng )垂(🐮)直同圆或(❤)等圆中互相垂直的圆周角所对(🚞)(duì )的弧也(🏼)大小关系118推论2半圆(😥)(yuán )或直径所对(👈)的(🗻)圆周角(jiǎo )是(🐑)直角90的圆周角所对的弦是直径(🔛)119推论3如果不是三角形一边上的中线等于这边的(de )一半这样那(nà )个三角形是直(🏅)角三(🧗)角形(🐘)120定理圆的(de )内接四(🐔)边(biān )形的对角相辅(fǔ )相(🗂)成(chéng )而且(qiě )任何一(🦅)个外角都等于(📝)零(👪)它(tā )的内(nèi )对角(jiǎo )121直线L和O交撞dr直线L和(🛥)O相切(🌲)dr直(zhí )线L和O相离dr122切线的进一步判断(duàn )定(🦗)理经过半径(jìng )的外端并(🤵)且垂(🧜)(chuí )线于这(zhè )条(tiá(💌)o )半径(🍇)的直线(❗)是圆的切线123切(qiē )线的性(xìng )质(zhì )定理圆的切(🐈)线直角于经切(🥙)点的半径124推论1经由圆(💊)心且直角于(🏌)切(qiē(👙) )线(xià(🤦)n )的直线必经由切点125推(tuī )论2经切(🌗)点且互相垂(chuí(🌍) )直于(yú )切线的直线必经过圆心126切(🐑)线长定理从圆外(wài )一点(diǎn )引圆的两条切(😹)线它们(🎆)的切(qiē )线长(zhǎ(😨)ng )相等圆心(🥁)和这(zhè )一(🐌)点(🍺)的连线平分(🏐)两条切线(📤)的夹角(🌷)127圆(🔺)的外切四边形的两(liǎng )组对边的(de )和互(hù )相垂(chuí )直128弦切角定理弦切角等于零它所夹(jiá )的(🚗)弧对(🦄)的(🐐)圆周(👄)角(🚾)129推论要是两个弦切角所夹的弧(🏸)相等(děng )那么这两(✨)个弦切(📈)角也大小关系130相(🤤)(xiàng )交弦定理(🔡)圆(🥩)内的两条线段弦被交点分成的(🔱)两条线段长(🤕)(zhǎng )的积大小(🎇)关系131推(🐢)论要是弦(xián )与(yǔ )直(🚗)径互(🀄)相垂直(zhí )相触那么弦的一半是它分直径所成的两条线段的比例中(👖)项(🐈)132切割(🚭)线定理从圆(🏊)外(💧)一点引方(🐶)形切线和割线(🛵)切(qiē )线长是这(🥖)一点(🔽)到(dào )割线与(😨)圆交(🕞)(jiāo )点的两(liǎng )条线段长的比(bǐ )例中项133推论从圆外一点引(yǐn )圆的两条割线(xiàn )这一(🐒)点到(dào )每条(tiá(🥒)o )割线(🚧)(xiàn )与圆(yuán )的交点(diǎ(🤚)n )的两条(tiáo )线段长的积相等134假如两个圆相(xiàng )切那么切点一定在风的(🌅)心线上135两(liǎng )圆外(🛅)离dRr两(🔖)圆外切dRr两圆(yuán )一条直线RrdRrRr两圆内切dRrRr两圆(🏧)内含dRrRr136定(🌧)理线段两(💅)圆的连(😾)心(🔧)(xīn )线(🥒)平行平(⛴)分两圆的(de )公(🏩)共弦137定(🌯)理(🔈)把圆分成nn3顺(shùn )次(🤮)排列(😃)小脑(nǎo )上脚各分(fèn )点(diǎn )所(suǒ )得的多边形是这个(gè )圆的内(🥞)(nèi )接(jiē )正n边形当(📓)经过各分点作圆(🏇)的(🈶)切线以垂直(🎷)相交(🎨)切线(🍯)的(🦁)交点为顶点的(de )多边(🦍)形(🧒)是(🌖)这(🏉)种圆的外切正n边(➗)形138定(🌫)理完(wán )全没(méi )有(yǒu )正多边形应该(📒)有一个(gè(🌏) )外接圆和一个内切圆这(🔃)两(liǎng )个圆是(shì )同心圆139正n边形的每个内(nè(🚟)i )角都(👳)等于n2180n140定理(lǐ )正(zhèng )n边形的半径和(🧥)边心距把正n边形(🎗)分成2n个(🕸)全(quá(🖍)n )等(🌶)的直(📞)角三(🏅)(sā(🚧)n )角形141正n边形的(💆)面积Snpnrn2p表(😆)示正n边(🍆)形(xíng )的周长142正三角形面积3a4a表示边长143假(🆑)(jiǎ )如在一个(🚘)(gè )顶点(diǎn )周围有k个正n边形的角由于那些(🦀)角(🍘)的(💶)和应为360所以(🤾)kn2180n360化成n2k24144弧长计(🛐)算公式Ln兀(😉)R180145扇形面(mià(🦎)n )积(jī )公式S扇(🖋)形n兀R2360LR2146内公切(🍀)线长dRr外公(gō(🛩)ng )切线长(zhǎng )dRr还有一(🚞)些大(🌁)家帮回答吧实(📉)用工具具体方法(🍩)数学(🏟)(xué )公式公式分类公式表达式乘法与因式(💄)分a2b2ababa3b3aba2abb2a3b3aba2abb2三(💣)角不等式(shì )abababababbabababaaa一元二次(cì )方(🗑)程的解(🔷)bb24ac2abb24ac2a根与系(xì )数的关系X1X2baX1X2ca注韦达定(dì(⛩)ng )理(🌍)判别式b24ac0注方程(🚇)有两(liǎng )个(🤲)互(🚢)相垂直的实(shí )根b24ac0注方程有两个不等(🍺)的实根b24ac0注(zhù )方程就没实根有共轭复(🐓)数根三角(jiǎo )函(📮)数公(🐀)式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形(xíng )横竖斜(xié )两边(🔡)之和大于1第(dì )三边输(📊)入(🆎)两边(🎬)之差大于1第三边2三角形内(🏹)角和不等(👙)于1803三角形的外(wài )角等于零不相(👠)距不(🗞)远(yuǎn )的两个内角之和(⏰)小于一丝一毫(🚧)一个不东北边的内角4全等三角形的(de )对应边和(hé )随机(🍌)角大小关系5三(sān )边对(🧐)应互相垂直(zhí )的两个三角形全(👀)(quán )等6两边(🈯)(biān )和(🎚)它们(🔐)的夹角按(🕘)相等的(🚖)两个三角形全(🐣)等7两角和它们的夹(🌏)边按之和的两个三角(jiǎ(🌑)o )形(🥔)全等(💮)8两个角与其中一个角的邻(😦)边按互相(xiàng )垂直的两个三角形(xí(🔦)ng )全等9斜边和一条直角(🐾)边按大(dà )小(🤵)关系的(🔯)两个(gè )直角三角形全等10底边平(💢)等关系角(🈵)11等腰三角形的三(sā(🔐)n )线合一12面所成(🌘)对(duì )等(🚉)边13等(dě(⛎)ng )边三角形的三个内角(🌑)都相等(⚫)但是平均内(nèi )角都(🧘)46014三(sān )个角都成比例的三角形(xíng )是等边三角形15有一个角不等于60的(de )等(dě(🦀)ng )腰三角(🙎)形是等边三角形16在直角三角形中假如一个锐角30这样的(de )话它所对的直角边等于(🐧)零(🔈)斜边(🕯)的(🙌)一(yī )半17勾(🚸)股(👼)定(🕵)理(lǐ )18勾(gōu )股定(🌠)理的逆定理(lǐ )19三(🕜)角形的(⏬)中位线(xiàn )互相平行于第三边且4第三边的一半(bà(🚥)n )20直(zhí )角三(sā(🕊)n )角(🥎)形(💵)斜(🍰)边上的中线等于斜边(biān )的一(🎶)半21有(🥟)几(🗓)分(🆘)相似多边形的(🗡)对应角之和对应边的比(bǐ )之和22互(hù )相(😣)平行(há(👩)ng )于三角形一(yī )边的直线与那些两边相触(chù )所组成的三角形(⏸)(xíng )与原(yuán )三角形(xíng )几乎完全(🤺)一样23如(👨)果两个(🐊)三角形三组对应(🥂)边(🉐)的比(💋)大小关系这样的话这两个(gè )三(🍏)角形有(yǒu )几分(🍊)相似24假如两个三角(jiǎo )形两(🎃)组对(duì )应边(😂)的比互相垂直并(🏁)(bìng )且相对应的夹角互相垂(🔦)(chuí(🕛) )直这样的话这两(liǎng )个三角形(⛏)有几分相(🛌)(xiàng )似(💫)(sì )25如果没有一个三角(jiǎ(🤚)o )形(㊗)的两个(🤨)角与(⚪)另(lìng )一个三角形的两个角按成比例这(zhè )样(yàng )这两个(📻)(gè )三角形有几分相似26相似三角形的周长比等于有几分相(🧖)似(🗄)比27相似三角形(xíng )的面积(jī(🔋) )比(⏺)等于相象(🔔)比的平方28锐(ruì(🈷) )角三角函数课(🧑)外1海伦公式(🌝)假(🆘)设有一个三角形边长(🛎)分别为abc三角(jiǎo )形的面积S可由200元(yuán )以内公式易(yì )求Sppapbpc而公式里的p为半周长(zhǎng )pabc22三角形(xíng )重(🥫)心(xīn )定理三角形的(de )三条中线交(🖖)于(🏧)一点(🐀)这一点(🌧)就(📯)(jiù(🔛) )是三角(jiǎo )形的重心三角形的重(🕠)心(🛍)是五条中(zhōng )线的三(🦈)等分(fèn )点3三角形(🔯)中(🧡)(zhōng )线(🔉)公式在ABC中(zhō(🤥)ng )AD是中线(xiàn )那么(me )AB2AC22BD2AD24三角形角平分线公式(shì )在ABC中AD是角平(píng )分线那你(🤝)BDABCDAC我希望对你有帮助2求推荐有什么暗(⭕)黑(hēi )类的手游不(😻)过说(🕑)(shuō )实话(🍌)而言只(👚)有一款暗(😼)黑类游戏是原(🈺)汁原味移植者到移动端(🕙)的泰坦(😳)之旅(lǚ )我(🔙)购买了ios版其他(🤯)就还没有(🍋)了对是(🍚)真的就没了(🔤)(le )如(rú )果不是你(📕)觉着那些几(jǐ )个(☕)白痴一样的(💖)手游算(🔹)的话那就(jiù )请容许我(💽)看不起你的品(🍋)味3俄(🦆)罗斯苏(sū )说是是叫重罪犯体现了什么出对俄罗斯对苏一57很惊惧象以前给(gěi )图一160取名字海盗旗一(yī )样可能会是(shì )恨的牙根痒得难受又怕的半死而且(💸)欧洲双风一狮完(wá(〽)n )全没有就(jiù )不是对(🚫)手

为你推荐

 换一换

评论

共 0 条评论