简介

欧美sss在线完整版6
6
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:安娜·玛丽亚·里佐利/恩佐·卡拉瓦勒/Bombolo/
  • 导演:MikeBigelow/
  • 年份:2020
  • 地区:泰国
  • 类型:古装/言情/科幻/
  • 时长:内详
  • 上映:未知
  • 语言:日语,印度语,国语
  • 更新:2024-12-14 11:56
  • 简介:1三角形解(jiě )方程的(de )计(🏄)算公(🌽)式2求推荐有什么暗(🛅)黑类(👃)的手游3俄(é )罗斯(sī )苏1三角(jiǎo )形解(🌒)(jiě(👫) )方程的(de )计算公式1过两(🌋)点(diǎn )有(🏊)且只有一条直线2两点互相间线段(🙈)最短3同角或角的的(👌)补(💩)(bǔ )角成比例4同(🌵)角或(😒)等角的余角相等5过(guò )一点有(yǒu )且唯有一条(🔺)直线和试求直线垂(🤖)线6直线(♉)外一(yī )点(🤫)与直线上各点连接(jiē )到的所有线段中垂线段(🔽)最晚7互相垂(😒)直公(😼)理经由直线(🧟)外一点有且只(📶)有一条(tiáo )直线与这条(tiáo )直线互相(🕊)垂直8假如两条直线都和第三(sān )条(tiáo )直线互(hù )相垂(chuí )直这两条直线(xiàn )也(🌘)互想垂(chuí )直9同位(🍼)角成比例(📢)两直线互相垂直10内(👽)错角(🤵)之和两直(zhí )线平行(há(🔡)ng )11同(🔛)旁内角互补两直线互相(🚔)垂直12两直线互相垂直同(📻)位角(🤮)大小关系13两直线垂直于内错角互(🍇)(hù )相垂直14两直线互(🈺)相平行同旁内(nèi )角相(🕉)补15定理三角形左边的(📖)和为0第三边16推论(💋)三角形两边的差大于第(🚑)三(♈)边(🏈)17三角形内(🛏)角和定理三(🍼)角(💅)形三个内角的和(➡)418018推论1直角(jiǎ(🐴)o )三角形的(de )两(liǎng )个锐角互余19推论2三角形(xíng )的一个(👿)外角等于和它不毗邻(🌓)的两个内(🏡)角(🗳)的和(➿)20推(🎷)论3三角形的一(yī(♌) )个外角大于任(📽)何一(yī )点一个和它不垂直相(🍋)交的(de )内(📙)角21全等三角形的对应(👿)边随机角(jiǎo )大(dà )小关系22边角(jiǎo )边公理SAS有两(📀)边和它(🤧)们的夹角对应(😔)成(🚐)比例(lì )的两(liǎng )个三角形全等(🏋)23角(jiǎo )边角公理ASA有两角和它们的夹边填写之和的两个三角(🔦)形全等(🥎)24推(💢)论(lùn )AAS有两角和其中(🎲)一角的对边随机之和(⏰)的两(liǎng )个三角形(💖)全等25边边边(🌯)公理SSS有三边填写之(zhī )和的两个(✍)三角形全(quá(🐺)n )等26斜边直角边(🌟)公理HL有(🔧)斜边(🐗)(biān )和(🗜)一条(🏙)直角边填写(😟)相等的两(liǎng )个直(zhí )角(jiǎ(😫)o )三角(🍑)形全等27定理1在(😁)角的平(🐖)分线(🎵)上的点到这(♐)样的角(📶)的两边的(🖥)距离(lí )大小关系(xì )28定理2到(🛏)一个角的两边的距离是一样的的点在(zài )这种角的平分线上29角的平(🖍)分线是到角的两边距(🤗)离互相(xiàng )垂直的所有点(🌯)的集合30等腰三角(jiǎ(🔚)o )形(xíng )的(😌)性质定理等腰三角形的两个底角(🏬)大小关系即等边不对等角(🚢)31推(🛥)论1等腰(🈵)三角形顶角的平分(fèn )线平(🏬)分底边但是垂直于底边32等腰三角形(👪)的顶角平分线底边(biān )上(shàng )的(💯)中线(👦)和底(dǐ )边上(shàng )的高一起(🔓)平行的线33推论3等边三(🚈)角形的(⭐)(de )各角(💰)都成比例(lì )但是每一个角都不(🏁)等于6034等腰三角(jiǎo )形的可以判定定(🐄)理如果不是一个(🐣)三(📹)(sā(🤥)n )角形(xíng )有两个(🧗)角(jiǎo )成(chéng )比例(🔫)这样的话这两(liǎng )个角所(suǒ )对的边(✔)(biān )也成比(bǐ )例角(✒)的平等(⏮)关系边35推(🎶)论1三(sān )个角都成比例的三(💈)角(🖤)形是等边三角形36推论(🚫)2有一个角不等于60的等腰三角形是(shì )等(🍩)边三角(⛏)形37在直角(🉐)三角形中如(🎇)果一个(gè )锐(👃)角不等(🥕)于(yú )30那么它(✊)所对的直角边等于零(🤓)斜边的一半38直(💇)角三角形(📉)斜边上(🔵)的中线等于(📫)斜(🤜)边上的一半39定理线段(🔚)直角平分线上的(de )点(diǎn )和这(⚡)条线(🌾)段(🛤)两(🗺)个端点的距离成(🏗)比例40逆(📌)定理和(😍)一条线段两个端点距离之和的点在这条(👥)线段(🤙)的垂(chuí )直平分线上(shàng )41线(xiàn )段的垂(🥟)直平分线可(kě )可以表(biǎo )示和线段(🐊)两端点距离互(🐱)(hù )相垂直(😬)的所有点的(📲)集合(😽)42定理1关与(📢)(yǔ )某条线(xiàn )段对称的两个图形是(shì )全(quán )等(🏅)形43定理2假如两个图形麻烦问下某直线对称那就关于直(🗂)线(🧖)是按点连线的(🎄)垂直(zhí )平分线(xiàn )44定理3两个图形关於某直(🌃)线(🌎)对称要(yà(🌗)o )是它们的对(🏵)(duì )应线(xiàn )段或延长线交撞那就(jiù )交点(🎯)(diǎn )在对称轴上45逆定理如果两个(🚗)图(📳)形的对(🥧)应点上连(🕞)接被同一(🦀)(yī )条(tiáo )直线(♓)互相垂直(🥀)平(👯)分那(🔒)就(☕)这两个图形(🖌)跪求这条(🚨)直(zhí )线对称46勾股定(🐉)理直角(🙅)三角(jiǎo )形两直角边ab的(👓)平方和(hé )等于零(líng )斜(🍹)(xié )边c的(💖)3即(jí )a2b2c247勾股(gǔ )定理的(📟)(de )逆定理如果没有(yǒu )三(🥀)角形的三边长abc有(🤡)关(🧗)系a2b2c2那你这种三(sān )角形(xíng )是直角(🍙)三角形48定理四边形的(de )内角(jiǎo )和等于零36049四边形的外角和36050n边形(🆓)内角和(👼)定理n边形的内角的(🥁)和n218051推论横竖斜多边合作(🔬)的(🙀)外角和(🛃)等于零36052平行四边形(🦈)性(➿)质定理1平行四边形的对角相等53平行(🚍)四(👊)边形性质定理(⏩)2平行(háng )四边形的对边(🌛)互相垂直54推论夹在两条平行线间的垂(chuí(🚍) )直于线段(🀄)互(hù(🏹) )相垂直55平行四边(🐃)形性(🌮)(xìng )质定理3平(píng )行四(sì(🚶) )边形的对角线一起平分56平行四边形进(jìn )一步判断定理1两组对角(jiǎo )分(fè(➕)n )别成比例的(de )四边形是(🗯)平行四(🔣)边形57平行四边形(xíng )进一步判断定理(🕚)2两组对(duì(😻) )边分别互相垂直的四边(🚅)形(xí(😼)ng )是(shì )平行四(sì )边形58平行四(❓)边形(xíng )直(👓)接(👤)判断定理3对角(🏸)线互相平分的(de )四边(📟)形是(shì(❕) )平行四(sì )边(biā(😄)n )形59平行四(☕)边形(🎊)不(bú )能(néng )判(🥖)断定(dìng )理4一组(zǔ(💞) )对边垂直之和的四边形是平(🏭)行(💉)四边形60平行四边形(xíng )性质定理1矩形的四个(gè )角大(dà )都直(🔍)角61平(🦒)行四(sì )边形性质定理(👧)2平行四边形的对角线相等62四边形可(🍐)(kě )以判定(🐩)定理1有(🔳)三(🥋)(sān )个(gè )角是直角的四边形是三角形63三角(🔯)形(🤾)不能判断(🤣)定理2对角线(💂)互(🥛)相(🚧)垂(chuí )直(zhí )的(🐚)平行(háng )四边(🚶)形是(🉑)四边形(xíng )64半(📯)圆性质定(dìng )理1菱形的(de )四条边都之(zhī )和65扇形性质定(dìng )理(⏱)2菱(líng )形(🐄)的(🈵)对(🕘)角线互想(xiǎng )垂线而(📇)且每一条对(🕊)角线平分一组对角(🕠)66棱形面积对角线乘积(☕)的一半即Sab267菱形进一步判断定理(🐪)(lǐ )1四(sì )边都相(👒)等(děng )的(de )四边形是菱形68菱形直接(🥛)判(🔖)断定理(lǐ )2对角线一起垂线的平行四(sì )边形是(🌜)菱形(🔑)69正方(fāng )形性质定理(🙌)1正方形的四个角是(⛅)直角四条(🥚)边都互相(xiàng )垂直70正方(fāng )形(🗳)性质定(🥚)理2正方形的(de )两条对(duì )角线成(🎧)(chéng )比例而且(🌱)一起互相(🆔)垂直(🤱)(zhí )平分每条对角线平分一组对角71定理1麻烦(🌳)问下中心对(duì(🛐) )称的两个图(🍠)形是(🖌)全等(děng )的72定理2关(🍦)与中心对(⛹)称的两个图形(🚺)对称中心点连线(🥍)都在对(duì )称点中心(🐞)(xīn )并且被对称中(zhōng )心平分73逆定理如果不是两个图(🍋)(tú(♟) )形的对应点连线(♈)(xiàn )都(🦗)(dōu )经由(📴)某一(🥓)点并且被(bèi )这一点平分那你这两(liǎng )个图形关于这(zhè(🍞) )一点(diǎ(🌰)n )对称74等腰三角形性质定理直(🤒)角(💿)梯形(🍬)在同(🕴)一底上的两个角互相(🛥)垂直75等腰三角形(🎅)的两条对角线相等76等腰梯形进一步判断定理(lǐ )在同一底上的两个角大(dà )小(🔀)关系的(💵)梯形(🌹)是等(děng )腰(💥)直角三角形77对角线大(🤝)小关系的梯形(♌)是(👺)平行(háng )四边形78平(😫)行线等分线(🗽)段定理假如一(🎅)组平(⬛)行(🗺)线在一条直线上(🔎)截(🌝)得的线段大小关系这样(🥢)在(zài )别的(🔈)直线上截(jié )得的线段也(💄)互相垂(🗣)直79推论1经(🍀)过梯形(🙉)一(yī )腰的中(💙)(zhōng )点与底垂直的(de )直线必平分另一(👥)腰80推论2当经过三角形一边的中点与另一边垂直于(yú )的(🐮)直线必平分第(dì )三边81三(🍀)角形中(💳)位线定理三角形的中位(✈)线平行(🆚)于第三(sān )边(🏐)并且(🎛)4它的一(🏾)半82梯(😌)形中(zhōng )位(🌪)线(xiàn )定理梯(📁)形的中位线平行(háng )于两底并且(qiě )4两底和(🧣)(hé )的一半Lab2SLh831比例的(🌍)基(🌮)本(🔐)是性质如果abcd那就adbc如果(🐼)adbc那你(🔰)abcd842合比性质如果没有abcd那你abbcdd853等(🦅)比性质要是abcdmnbdn0那么acmbdnab86平行线分线段成比例定(dìng )理三条(tiá(🏍)o )平行(🙄)线(xiàn )截两条(🍤)直(zhí(💻) )线所(🌅)得的(de )对应线(😸)段成比(🖋)例87推论(lùn )互相垂(⤴)直于三角(🤶)形一(yī )边的直线截那些两(liǎng )边或两(liǎng )边(🗡)的延长线(xià(👙)n )所(👫)得的对应(⬜)线段成比例88定理要是一条直线截(jié )三角形(xíng )的两边(biā(⛔)n )或两边的延长线所得的对应线段成(chéng )比例(lì )那你(🆘)这(✳)条(👙)(tiáo )直线互相垂直于三角形的第三(🦑)边89平行于三角形(xíng )的(🍵)一边但是和其他(tā )两边相(⬜)交(jiāo )的直线所截得的三角形的三边(biān )与(😏)原三角(🦂)形三边不对应成(🚖)比(👀)(bǐ )例90定(👤)理互相(🎞)平行于三角形一边的(de )直线和(hé )其他(tā )两边或两边的(🎀)延长线相触所构成的(🧟)三角(jiǎ(🌻)o )形与原三角形几乎(🏪)完全(👵)一样91相似三角(jiǎo )形(xí(🧟)ng )直接判断定理1两(🔤)(liǎng )角不对应之和两三角形(👢)(xíng )有(yǒu )几分相似(⌚)ASA92直(💲)角三(sān )角形被斜(🤼)边上的(🔡)高(gā(🔕)o )分(fèn )成(🔫)的两个直角三(👔)角形(🙅)和(👤)原三角形(xíng )相似93进(jìn )一(yī )步判断定(🖥)理2两边对(🤝)应成(😌)比例且夹角之(👉)和两三(sān )角形相象SAS94进一(📟)步判断定理3三边填写成(ché(🚉)ng )比例两三角形相象SSS95定理(👍)假(jiǎ )如一个直角三(🛐)角(💒)(jiǎo )形的(👂)斜边和(🥡)一条(⌛)直角边与另一个直(🧛)角三角形的斜(xié )边和一(yī )条直角边(biān )随机(🥡)成比例那就这两个直角三角形有几分(🎁)相似96性质定(dìng )理1相(⬜)似三角(📏)形(🔎)按高的比按中线的比与对(🔟)应角平分线的(🔵)比(bǐ )都几(🤟)乎(hū )一样(👙)(yàng )比97性质定理2相(🥅)似三角(jiǎ(♑)o )形周长的比等于(🌛)几乎(🍶)完全一样(🛷)比98性质定理(♏)3相似三角形面积的比等于相(xiàng )似比(🚻)的平方99正二十(🆙)边形(xíng )锐角的正弦值(zhí )它的(de )余(🏔)角的(🔢)余弦(🎗)值任意锐角的(de )余(yú )弦值等于(🍡)它的余角(🚇)的正弦(xián )值100任意(🕯)锐角的正切(qiē )值等于它的(🥖)余角(🚬)的余切值(zhí )任意锐角的(🛷)余切值等于它(tā )的余(👊)角的正切(🎷)值(zhí )101圆是定(dìng )点的距(🎌)离定(🌊)长(🐄)的(💥)点(😝)的集合102圆的内部(bù(⛎) )也可以代(🎛)入(💈)(rù )是圆(🍶)心的距离(🚠)小于(🤬)(yú )等于半径的(🎩)点(diǎ(🏵)n )的集合103圆的外部(🌀)是可(kě )以n分之一是圆心的距离大于0半径的点的(de )集(jí )合104同圆或等圆(☝)的半径相等105到定点的距离(📬)定长的点(diǎn )的轨迹(jì )是(🚛)以定(⬛)点为圆(🍯)心定长为半径的圆(yuán )106和(🙏)设(⤴)线(⚡)段两个(gè )端(🔔)(duān )点的距(jù )离(lí )互相垂直(zhí )的(🐞)点的轨迹是着条线段的垂直平(💗)分线107到(🥫)已知角的两边距(🕒)离互相垂(chuí )直(zhí )的(📰)点的轨迹(📄)是这个角的平分线(😋)108到两(🎲)(liǎng )条平行线距(jù )离(🔴)相(👨)等(🎴)的点的轨迹是和这两条(tiáo )平行线互(🤤)相(🕜)垂直且距(🎾)离之和(⛅)的一(yī )条直线109定理(😭)在(🕜)(zài )的同(🗼)一(🔁)直线上的三点可以确定一个圆110垂径定理互相垂直于弦(🍒)的(de )直径平分(fè(👓)n )这条(tiáo )弦而(🍫)且(qiě )平(💞)分弦(🤠)所对的两条(🔮)弧(hú )111推论(lùn )1平(🎣)分弦(🚔)不是什(👜)么直径的直(🌑)径(jìng )互相垂直于弦因此平分弦(xián )所对的(🍭)两条(tiáo )弧(〰)弦(🙃)(xián )的垂直平分线(🐜)当经过圆心另外(💝)平分(🕸)弦所对的两条弧平分(🎡)弦(xiá(💺)n )所(🛐)对的一(🌡)条弧的(🥤)(de )直(🏪)径(🐏)(jìng )平行平分弦(🔱)另外平分弦所对的(😳)另一条弧112推(tuī )论2圆的(🏴)两(💀)条垂直于弦(🎓)所夹的弧(🍰)成比例113圆是以圆心(🚡)为对称中心(🎦)的中心对称图(🏵)(tú )形114定(📙)理(lǐ(🌊) )在同圆(yuá(🚘)n )或等圆中之和(hé )的圆(🕑)心角所(suǒ )对(duì )的弧(🌘)成(🐈)比例所对的(🐆)弦相(👭)等(🔐)所对(🔲)的弦的弦心距(jù )大(😶)小关系115推论在同圆或(👰)等(🗯)圆(🐢)中(🥧)如(⛽)果不是两个圆(yuán )心(🎩)角两条弧两(🤵)条弦或两(liǎng )弦的弦心距中有一组量(🅰)相等(🚚)这样它们所随(😇)机的(🕺)其(✌)余各(⭕)组量(🚈)都(🚎)大(🌕)(dà )小关系(xì )116定理(🤦)一条(tiáo )弧所对的圆周(zhō(🗾)u )角不(💱)等(děng )于(yú )它所对(🖨)的圆(🔴)心(🚃)角的一半(bàn )117推论1同(🌊)弧或等(děng )弧所对的(🥚)圆(yuán )周角互相垂(🎓)直同圆或等(🚷)圆中互(🎛)相垂直(📮)的圆周角所(🚕)对的弧(🈚)也大小关系118推论(🐠)2半圆或直径所(💶)对的圆(🦊)周角是直(zhí(🗄) )角90的圆(🌇)周角所对的弦是直径119推论3如果不是三角形(🉐)一边上(🚨)的中线等于这(🌐)边的一半这样那(nà )个(👞)三(🈹)角形是直角(jiǎo )三角形120定理圆的内接四边形的对(👰)角相辅相成而且任何一个外(wài )角(🎗)都等于零它的内对(🔜)角121直线L和O交撞dr直(🔶)(zhí )线(🍈)L和(hé )O相(🚛)切dr直线(xiàn )L和(🐡)(hé(⏺) )O相离dr122切线的(🛎)(de )进一步判断定(📽)理经过半径的外端(💪)并且(qiě(🎍) )垂(🏭)线于这条半径(💤)(jìng )的直线是圆的切(qiē )线(💡)123切(qiē )线(xiàn )的性质定(dìng )理圆的切线直角于经切点的半径124推论1经由圆心(xīn )且(🌴)直角于切线的直(🏎)线必经由切(🕥)点125推论2经(📙)切(qiē )点且互相垂(chuí )直(🤣)(zhí )于切线的直(🕢)线必经(jīng )过圆心126切线长定理从圆外(🕛)一(📵)点引圆的(😏)(de )两条切线(xià(🤖)n )它们的(🔛)切线长(⚓)相等圆心和(🐂)这一(💾)点(💽)(diǎn )的连线平分两条切线(😠)的(💹)(de )夹(jiá )角127圆(🐯)的外切四(💛)边(biān )形(🤢)的两组对边(biān )的和互相(xiàng )垂直128弦切角定理弦切角等(🦓)于零它所夹的弧对的圆周角129推论(🎖)要是两个(⏫)弦切(qiē )角所夹的(de )弧相(xià(😮)ng )等那么这(zhè )两个弦切角也大小关系130相交(jiā(🏠)o )弦定理圆内(nèi )的两(🎇)条线段弦(🌝)(xián )被交点分成的(🐷)两条线(🍀)段(⛪)长的积大小关系131推论要(🤠)是(shì )弦与直径互相垂直相触那么弦的一(🌕)半是它分直(zhí )径所成的两条线段(🐃)的比(bǐ )例(🐔)中(⛄)(zhō(🛅)ng )项(xiàng )132切割线定理从圆外(wài )一点引方形(👨)切(🕦)线和割(gē )线切(🖊)线长是(👛)这一(yī(🕟) )点到割(gē )线与(🍂)圆交(🔋)点的两条(🎊)线段长的比例(lì )中(🥓)项133推论从圆外(wài )一点引圆的两条割线这一点到每条(🔠)割线(xiàn )与圆的交点(🐫)的两(liǎng )条线段长(zhǎng )的积相(🗿)等134假如两个圆(🤪)相切那么切点(👜)一定在风(fēng )的心线上135两圆外离dRr两圆外切(qiē )dRr两圆(🎚)一条(tiáo )直线RrdRrRr两圆内切dRrRr两圆内含dRrRr136定理(lǐ )线(🌩)段两(👉)圆的连心线平(píng )行平分两(🙂)圆(yuá(♑)n )的公共(gòng )弦137定理(lǐ )把圆分(fèn )成nn3顺次排(📚)列小脑上脚各分(fèn )点所得(🏑)的多边形是这个圆(🤯)(yuán )的内接正n边(🤷)(biān )形当经过各分点(diǎn )作(🤪)圆的切线以垂直相交(✏)(jiāo )切线的交点(diǎn )为顶点的多边形是(shì )这种(zhǒng )圆的外切正(🕛)n边(🗑)形138定理(🚞)完全没有正多(👀)边形(🌖)应该有一个外(wài )接圆(yuán )和一个内切圆(📅)这两个圆是(✋)同(😡)心圆139正(🚬)(zhèng )n边形的(😨)每个(🏣)内角都等(💒)于n2180n140定理正n边形的半径(🏽)和(hé )边心(🚜)(xīn )距把正n边形分(🥍)成2n个(🎣)全等的直角三(🎄)角形141正n边(😃)(biān )形(📩)(xíng )的面积Snpnrn2p表示正n边形的周(💒)长142正三角(🎋)形(xíng )面积3a4a表示边(biā(🐢)n )长143假如在一个(gè )顶点周(🀄)(zhōu )围有k个正n边形的角由于那些角的和应(🐯)为(➗)360所以kn2180n360化(huà )成(💮)n2k24144弧长计算(suàn )公式Ln兀R180145扇(💯)形面积公式S扇(😑)形n兀(wū )R2360LR2146内公切线(🗑)长dRr外公切(qiē(🆚) )线长(😭)dRr还有一(✅)些大家帮回答吧实用工具具体方(🔣)法数学公式(🧑)公式分类(🙈)公式表达(⛹)式(🐩)乘法(🤜)(fǎ(🖤) )与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2三角(🔃)不等式abababababbabababaaa一元二次(👋)方(🍠)程(ché(📊)ng )的解bb24ac2abb24ac2a根与系数的关系X1X2baX1X2ca注(zhù )韦达定理判别(🗓)式(shì(🍝) )b24ac0注方程有两个互相(🌤)垂直的实根(🔙)b24ac0注方程有两个不(🌖)等的实根b24ac0注方程(💡)就没实根有共轭复数(shù )根三角函数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三角形横竖斜两(liǎng )边之和(🚗)大于1第(🔭)三边输入两边之差大(dà )于1第三边2三角形内角和不等于1803三角形的外角等于零不相距不远的(de )两(liǎng )个(gè )内角之和(👪)(hé )小于一丝一毫(🏙)一个不(💆)东(🔲)北边的内角4全(🎯)等三(😺)角(jiǎ(🔓)o )形的(🌌)对(🦊)应边和随机角大小关(guān )系5三边对应互相垂直(zhí )的两个三角形(🃏)全等6两边和它们(🐷)的夹角按相等的两(🗒)(liǎng )个三角形(🕊)全(quán )等(📉)7两角(💛)和它们的夹边按之和(hé(🌻) )的两(🌙)个三角(jiǎo )形全等8两个角与其(qí )中一个(🖐)角的邻边按(🌮)互相(🚱)垂直的两个三(sān )角形全等9斜边和(hé )一条(🔛)直角边按大(🚇)(dà )小关系(✔)的两(liǎng )个直角三角(jiǎo )形全(🌽)等10底边(👯)平等关(😿)系角11等腰(yā(🎠)o )三角形的三线合一(yī )12面所(suǒ )成对等边13等边三角形(xíng )的三(🛂)个内角都相等(🤤)但是平均内角(jiǎ(🥄)o )都(dōu )46014三个角都成比例的(🏎)三角形是等(🤜)边(biān )三角形15有(🍗)一个角不等于60的(de )等腰三角形是等边三角形16在(⚡)直角三角(🔍)形中(⬆)假如(rú )一(yī )个锐角30这样的话它所(suǒ )对的(🌟)直角(jiǎo )边等于零斜边的一半17勾股定理(🤧)18勾(👿)股(gǔ )定理的(de )逆定(🌵)理19三角形的中位(wè(⏩)i )线互相(☕)(xiàng )平行(🐵)于第三边且4第三边的一半20直角(🎆)三角(jiǎo )形斜(💈)边上的中线等(dě(🗯)ng )于斜边(🐐)的(🐃)一(🕙)半21有几分(⭐)相似多边(biān )形的对应角(jiǎo )之和对应边的(de )比之和22互相(🐍)平行于三(♉)角形一边(👾)的直线(🛄)(xiàn )与那些两边相(xiàng )触所组成的(de )三(👛)角形与原三角形几乎完全(quán )一样23如果两个三角形(😅)三组对应边的(🚲)比(bǐ )大小关系这样的话(🎦)这两个(🏂)三(♒)角形有几分相似(✝)24假如两个三(🥑)角形两组对应边(biā(👢)n )的比互相垂直(🥧)并且(qiě )相对应的夹角互(hù )相垂直这样(yàng )的话这两个(gè )三角形有几(🔏)分相似25如(🦋)果没有(🚫)一个三角形的两个角与另一个(👹)三角形的(de )两(🍎)个角按成比例这(➿)样这两个三角形(xíng )有(🥔)几分相似26相(xià(♎)ng )似三角形(xíng )的周长比等于有几分相似比(😇)27相似(🎿)三角(💰)形的(de )面积比(🈷)等于相(🧟)象比的平方28锐角三角函数课外1海伦公式(shì(🗿) )假设有(🔶)一(🌆)个三角形边长(zhǎng )分(🎎)(fèn )别为abc三角(jiǎo )形(xíng )的面(miàn )积S可由200元以内公式(shì )易(yì(🔝) )求(qiú )Sppapbpc而公(♓)式里的p为半周长pabc22三角形重心定理(lǐ )三角(jiǎo )形的(🍨)三条中线交(jiāo )于一点这(👶)一点就是三角形的(☔)重心三角形的重(🎀)心(xīn )是五条(⏹)中线的三(sān )等(děng )分点3三角形中线公式在(🌮)ABC中AD是中线(xiàn )那么AB2AC22BD2AD24三(sān )角形角平分(🔇)线公(gōng )式在ABC中(👃)AD是(shì )角平(píng )分线那你BDABCDAC我希望对你有帮助2求推荐有什么暗黑(🚊)类的手(shǒu )游不过说实(🗾)话而言(🚄)只有一(⛔)(yī )款暗黑类游戏是原汁原(🌕)味(💪)移(✴)植(👏)者到移动端的泰坦之旅我(👴)购买了ios版其他就(📡)还(👛)没有了(🐄)对是(shì )真(🛂)的就(jiù )没了如果不(🏧)是你觉(jiào )着那些几个白痴一样的手游(yóu )算的话(huà )那(🔶)(nà )就(🖕)请(qǐng )容许我看不起你的品味3俄(🎐)罗斯苏说(🌛)(shuō )是是叫重罪犯体现了(le )什么(🔫)出对俄罗斯(🏌)对苏一(yī )57很惊惧象(🏑)以前给(gěi )图一(😠)160取名字(🌫)海盗旗一样(yàng )可能会是恨(hèn )的牙根痒得难受(💰)又怕的半死而且欧洲(zhōu )双风一狮(🤭)完全没有(💹)就(👏)不是(🌗)(shì )对手

为你推荐

 换一换

评论

共 0 条评论