简介

欧美sss在线完整版9
9
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:池松壮亮门胁麦新井浩文泷藤贤一驹木根隆介柄本时生三津谷叶子中村映里子赤泽瑟丽信江../
  • 导演:Giada/Colagrande/
  • 年份:2015
  • 地区:日本
  • 类型:动作/言情/古装/
  • 时长:内详
  • 上映:未知
  • 语言:印度语,韩语,日语
  • 更新:2024-12-19 15:28
  • 简介:(🔨)1三(🥞)角形解方程的计算公式2求推荐(jiàn )有什么(🥀)暗黑类的手游(📬)(yóu )3俄罗斯苏1三角形解方程(🦐)的计算公式(shì )1过两点有(yǒu )且只有一条(tiáo )直线2两点互相(🧕)间线段最短3同角或角的的补角成比例4同角或等角的余角(👼)相等5过一点(💶)(diǎ(🛀)n )有且唯有一条(tiáo )直线和试求直线垂线6直线(💼)(xiàn )外一点与直线上各(🥖)点连接到的所有线段中垂(🥢)线(🕳)段最晚7互(👮)相垂直公理经由(yóu )直线外(💗)(wài )一点有且只有一条直线与这条直(🍚)线(xiàn )互相(🚿)垂直(zhí )8假如两(Ⓜ)条直线(📂)都和第三条(tiáo )直线(🥧)互(👐)相垂直这两条(tiáo )直线也互想垂直9同位(🕔)角(🥩)成比例两直线互相垂直10内(😥)错(🌃)角之和两直(zhí )线平行11同旁内角互补(🤺)两直线互相垂直12两直线(xiàn )互相(🥞)垂直同位角大小关系13两直线垂直于内错角互相垂直14两(liǎng )直线互相(😀)平行同(😹)旁内角(jiǎo )相补15定理三角形左边的(de )和为0第三边(⬛)16推论三(sān )角形两边(biān )的(de )差大于第三(🌆)边17三(🏜)角形内角和定理(🎶)(lǐ )三角形三个内角的和418018推(😼)论1直角(🌊)三(sān )角形(xíng )的两个锐(ruì )角互余19推论2三角(🌓)形的(🕥)一(yī )个外角等(🚉)于和(🍧)它(⤵)不毗邻的两个内角的和(🙊)20推论(lùn )3三(🆔)角形的一个外角大于(yú )任何一点(👖)一个和它不垂直相交的内角21全等(🖕)三角形的(😾)对应边随(suí )机(😬)角大小关系22边角边(🎗)公理SAS有两边和它们的夹角对应成比例的两个三角形全等23角边角公理(🐸)(lǐ )ASA有(yǒu )两角和它们的夹(jiá )边填写之和的(de )两(liǎng )个三角形全等24推论AAS有两(👚)(liǎng )角和(hé )其中(🎳)一角的对边随机之(zhī )和(🆕)的两个三角形全等25边(🚠)边(biān )边公理SSS有(📚)三边填(😳)写之和的两(🚬)个三角形全等26斜边直(zhí )角边(⏰)公(🐀)理HL有斜边(biān )和(hé )一条直(zhí )角边填写相等(💮)的(💯)两个直角三(🛬)角形全等27定(🕐)(dìng )理(lǐ )1在角的(😾)平分线上的(🚝)(de )点到这样(🤳)的角的两边的距离大小关系28定理2到一个角(🚑)的(de )两边的距(🌏)离(lí )是一样(📑)的(📟)的点在这(💍)种角(🚪)的(🍹)平分线上29角的(😲)平分线是到(🎾)角(🍰)的两边距离互相垂直的所有点的集合30等腰三(🉑)角形的性质(⬆)定理等腰(🧥)三角形的两(🦓)(liǎng )个底角大小关(🥍)系即等(děng )边不对等角31推论1等腰三(🐆)(sān )角(📐)形顶角的平分线平分(⬛)底边但是垂直于(🍂)底边32等腰三角形的(🎠)(de )顶角平分线底边上的中线和(💞)底边上的高一起平(💛)行(🌵)的线(xiàn )33推论3等边三角形的各(🍩)角都(dōu )成比例(😉)但是(🛃)每一个角都不等于(🏷)6034等腰三角形(🍕)的可以判定定理如(🛠)果不是一个(gè(🔬) )三角形有(yǒu )两(liǎng )个角成比例这样的(🤡)话这两(liǎ(〽)ng )个角所对的边也成(chéng )比例角的平(🍊)等关系边35推论1三个角(jiǎo )都(🏨)成比(📁)例(🐡)的三(sān )角形是等边三角形36推论2有一个(gè )角不等(💓)于(❔)60的等腰(🏻)三角形是等边(🐩)三角形37在直(㊙)(zhí )角三(sān )角形中如(🏍)果(🗣)一个锐(ruì )角不等(děng )于30那么它所对的直角边等于零(líng )斜边(biān )的一半38直(👫)角(jiǎ(🦊)o )三角形斜边上的中线(🏎)等(📚)于斜(🌘)(xié )边(✔)上的一(yī )半39定理(🐒)线段直角平分线(😕)上(🛤)的点(🦂)和这条线段两个端点的(de )距离成比例(♋)40逆定理和一(💗)条线段两个(🚣)端(duān )点(🦀)(diǎn )距离之(🦉)(zhī )和(🙂)的点在这条(🌁)线段的(de )垂(chuí(🐆) )直平分线上41线段的(de )垂(🧦)直(🎾)平分线可可(🥟)以(⏩)表示和(📁)线段(🧞)两端(➡)点距(👈)离互(📣)(hù )相垂直的所有(😍)点的集合42定(dìng )理(🌂)(lǐ )1关与某条(✅)线(xiàn )段(🎭)对称的(🥀)(de )两个图形是全等(💓)形43定理(🕥)2假如(rú(🈸) )两个图(tú(💙) )形麻(má )烦(fá(🕳)n )问(🎮)下某直线对称那就关于直线是(shì )按点连(🌑)线的垂直平分线44定理(lǐ )3两个图形关(guān )於某直线(🔶)对称(chēng )要是它们(🐒)的对应线段或延(🤰)长线交撞那(🛒)就交点在对称轴上45逆定(🎞)理如果两个(🛁)图形的(🤼)对(🥄)应点(🎏)上连(🎐)接(jiē )被同一条(tiáo )直线互(hù )相垂直平分那就(jiù )这两(📙)个图形(xíng )跪求这条直(🐗)线(🌽)对称46勾股定(🙇)理直(🔶)角三(sān )角形两(🤮)直角(jiǎ(😺)o )边ab的平方和等于零斜边c的3即(♓)a2b2c247勾股定理的逆定理如(🎽)果没有(🎵)三(🌽)角形的三边长abc有关系a2b2c2那你这种(🕖)三(📧)角形是直角(🦈)三(sā(😛)n )角形48定理四边(biān )形的内角(jiǎo )和等于零(🍦)36049四边形(🤕)的外(wài )角和36050n边形内(🈴)角和定(😣)理n边(biān )形的内角的和n218051推论横(héng )竖(shù )斜多边合作的外角(jiǎo )和等于(🍼)零(🕑)36052平行(⛓)四边(😈)形性质定理1平(píng )行(háng )四边(🐧)形(xíng )的(de )对角相等(děng )53平行四边形性质(🅿)定理2平行四边形(xíng )的对边互(📑)相垂直54推论夹(jiá(📨) )在两条(tiáo )平行(♎)线间的垂直于(🆑)(yú )线段互相(xiàng )垂直(🎳)55平(🥂)行(🍱)四(📸)边形性质定(👊)理3平(píng )行四边形的对角线(xiàn )一起平分56平行四(🏒)边形(xíng )进一(yī(📮) )步判(pàn )断定理(🕜)1两(liǎ(🤙)ng )组(zǔ(🏥) )对角分(fèn )别成比(🌇)例的四边形(xíng )是平行四边形(xíng )57平行四边(🐶)形进(🖨)一步(👡)(bù )判断定(⏰)理(🌁)2两(🤘)组(🏞)(zǔ )对(👰)边(🛶)(biā(😸)n )分别互相垂直(❄)的(de )四边形(xí(🐥)ng )是平行四边形(🍼)58平行四边形直接判断(duàn )定理(🚡)3对角线互相平分(❔)的四边形是(shì )平行四边形59平行四边形不能判断定理4一组对(🔕)边垂直(zhí )之(zhī(👬) )和的四边(💄)形是平行四边形(📔)(xíng )60平行四边形性质(🚥)定理(🕳)1矩形(xíng )的四个角大(🔨)都直角(jiǎo )61平(🔗)行四(sì )边形性质定(dìng )理2平(píng )行(háng )四边形的对角(❗)线相等(🚤)62四(🥘)边形可以判定(💃)定理1有(🌊)三个角是(🎈)直角的(⏸)(de )四边(🐠)形是三角形63三角形不能判(🐪)断定理(lǐ(🔯) )2对角线互(hù )相垂直(zhí )的平(píng )行四(😄)边(〽)形(🤞)是四边形64半(🛬)圆性(☕)(xìng )质(zhì )定理1菱形的四条边(biān )都之和65扇形性质定理(lǐ(😨) )2菱形的对(⛴)角(jiǎo )线互想垂线(🦆)而(🙀)且(🤳)每(měi )一条对(duì(🌰) )角线(💞)平分一组对角66棱形(🗡)(xíng )面积对角线乘(🎊)积的(de )一半即Sab267菱形进一步(bù )判断定理1四边都相等的四(🚏)边形(😢)是(⭕)菱形(🍝)68菱(🐞)形直接判断(🍝)定(🧔)理2对(🏊)角线一起垂(🤦)线的平行四(🚠)(sì )边形是(🔑)菱形69正方形(⏭)性(👟)质定理(😿)1正(🚫)方形的四个(🗓)角是(🍙)直(zhí )角四条边都互相垂直(📒)(zhí )70正(zhè(💬)ng )方(🔮)形(📸)性质定理2正方形的(de )两条对角线(🐊)成比例而且一起互相(xiàng )垂直平分每条对角线平分(👓)一组对角71定理1麻(😂)烦问下中(zhōng )心(xīn )对称的两个图形是全等的72定理2关与中心对称的两个图形对称中心点连(👢)(lián )线(🥑)都在对称点中心并且(🕯)被(🗄)对称中(🍯)心(xīn )平分73逆(🐗)定理如(🆒)果不(bú )是(shì )两个图形的对(🦔)应(🛀)点连线都经由某一点并且(🥈)被(👭)(bè(📯)i )这一(yī )点平分那(🙅)你这两个图形关于(yú(🐜) )这一(😟)点对称74等腰三角形性质(😶)定理直角(jiǎo )梯(tī )形在(zài )同(tóng )一(🐦)(yī(🎴) )底上的两个角互相垂直75等腰三角(jiǎo )形的(⚡)(de )两(🛁)条对(🎈)(duì(👹) )角线相等76等腰梯形进一步(🕯)判断定理在同一底(⚪)上的(de )两个角大(dà )小关(guān )系(xì )的梯形是(shì )等腰(⏫)直角三角形77对角线大小关(guān )系(xì )的(🕘)梯形是平行(háng )四边形78平行线等分线段定理假(💎)如一(yī )组(zǔ )平行线在一条(tiáo )直(zhí(🚔) )线上(📒)截得的(💮)线段大小(🏓)关系这样(yàng )在别的(🌃)直线上截(jié )得的(🍱)线段也互相垂直79推论1经过梯形(🔴)一腰的中点与底垂直的直线(xiàn )必平分(fèn )另一腰80推(tuī )论2当经(🍬)过三角形一(🏐)边的中(🤮)点(➰)与另(🗯)一边垂直于(yú )的(🥑)直线必平分第三边81三角形(🏖)中(zhōng )位(🅿)线定(📂)理三角形的中位(🤰)线平行于第三边并且(🍐)4它的一半82梯形中位线定理梯形的(de )中位线平行(😘)于两底并(🤢)且4两底和的一半(🔜)(bàn )Lab2SLh831比例(🍋)的基本(🐩)是性质如果(🧗)abcd那就(🎚)adbc如果adbc那(nà )你(nǐ )abcd842合(hé )比性质如(🐗)果没(méi )有(yǒu )abcd那你(nǐ )abbcdd853等比(⏪)性质要(♈)是abcdmnbdn0那(🌥)么acmbdnab86平(pí(💞)ng )行线分线段成比例定理三条(🧚)平行线截两(liǎ(🛰)ng )条直线(🎚)所得的对应(🏴)线段成比例87推论互相垂直于(🛍)三角形一边(⚾)的直(⛺)线截(jié )那(🏋)些两边或(🍛)两(liǎ(👢)ng )边的延长(🐀)线(🏿)所得(👏)的(de )对应线段(duàn )成比例88定理要(yà(👣)o )是一条直线截三(sān )角形的两(liǎng )边或两边的延长线(🌁)所得的对(🌎)应线段成(🌔)比例(🏖)那(❤)(nà(🏯) )你这(zhè )条直(👙)线互(hù )相(💚)(xià(🍫)ng )垂直于三(🍷)角形(😢)的第三边89平行于三(sā(⚽)n )角形的(🌗)一边但(❗)是和其他(tā )两边相交(❗)的直线所截得的三(sān )角形的三边与原三角(jiǎ(😼)o )形三边不对应成比例(lì )90定(dì(✖)ng )理(👛)互相平(🕝)行于三角(🎤)形一边(🗿)的直线和其他两边(🙌)或两(🔇)边的延(yán )长(💷)线相触(🛳)所构成(chéng )的(de )三角(jiǎ(🛅)o )形(🧒)与原三角(jiǎo )形几(🚫)(jǐ )乎完全(🐹)一样(yàng )91相似三角形直接判(pàn )断(🕷)定(😍)理1两角不对应(yīng )之(zhī )和两三角(♈)(jiǎo )形有几分相(🚏)似(sì )ASA92直角三角形被斜边上的高分(🏔)成的两个直角三角形和原(📭)三角(😿)形(xíng )相似93进(jì(💫)n )一步(♟)(bù )判断(🏽)定理2两(🎨)边对(🥘)应成比例且夹(jiá )角之和两三角形相象SAS94进(jìn )一步判断定(🍛)理3三边(biā(➡)n )填写成(chéng )比例两三角形相象SSS95定(❔)理假如(📏)一个直角(💢)三角形的斜边和(🛌)一条直角(🍐)边与(🦂)另一(💎)个直角三角形的斜边和(🤛)一(yī )条直(🉐)(zhí )角(jiǎo )边随机(💔)成(🍗)比例那就这两个直角三角形(♎)有几分相似96性质定理1相似三角形按高(🤾)的比按中线的(de )比(🐂)与对应角平(píng )分线(xiàn )的比都几乎(🚩)一样比97性质定理2相似三角形周长的比(🐿)等于几(🌦)乎完全(🔲)一样(👿)比98性质(🍟)(zhì(🚑) )定理3相似三(🚕)角形面积的(💂)比等于相(✅)(xiàng )似比的平(píng )方99正(㊙)二十边形锐(🐣)角的正弦值它(tā )的余角(⛲)的(🕊)(de )余弦值任(📭)意锐角的余弦值等于它的(💶)余角的(📐)正弦值100任意锐(👃)角的(de )正(🔯)切值等于它(✂)的余(🍢)角(jiǎo )的余切值任意(🌀)(yì )锐角的余切(qiē )值(🤟)等于它(🎲)的余角的正切值101圆(yuán )是定点的距离定(🌓)长(🍷)的点的集(jí )合102圆(yuán )的(🐂)内部也(yě )可(🙈)以(yǐ(💩) )代入是(☔)圆心的距(jù )离小(🎭)于(🚓)等于半(🍃)径的(de )点的集合(🍹)103圆的(de )外部是可以n分之一是圆心的距离大于0半径(📀)的点的集合104同(📉)(tóng )圆或等圆的半(bà(📕)n )径相等105到定点的距(jù )离(lí )定长(🤵)的(🔭)点的轨迹是(🎿)以定点(diǎn )为圆(🚆)心定(🕵)(dìng )长为半径的圆106和设线段两个端(❣)点的距离互相垂(🌳)直的点的轨迹(🚺)是(📹)着条(🔻)线段的垂直平(📼)分线107到已知角的两边距离互(✝)相垂直(🌘)的(de )点的轨迹是这个角(jiǎo )的平分线(xiàn )108到两条平行线距离相等的点的轨迹(🎧)是和这两条平行线互相垂直且距离之和的一条(tiáo )直线109定理在的(🤢)同(🏚)一直线(🦌)上的三(🌡)(sān )点(🌷)可以(🙁)确定一(yī )个圆110垂径定理互相垂直于弦的直径平分这条弦而且(🐝)平分弦所对的两条弧(🚉)111推(💑)论(🍌)(lùn )1平分弦不是什么直径的直(👹)(zhí )径互相垂直于(🥖)弦因(yīn )此平分弦所(🤱)对的两条弧弦的(🤤)垂直(🐅)平分线当经过圆心另外(wà(🍼)i )平分弦所对的两条弧平分(🈂)弦所对的一条弧(🔹)的直径平行平分(fèn )弦(🕯)另外平分弦所对的另一条弧(hú(🎿) )112推(🕒)论(🌘)2圆的两条垂直于弦所夹的弧成比例113圆(😔)是(📧)以圆心为(wéi )对称中心(🍆)(xīn )的中心对称(chēng )图形114定理在(zài )同圆或等圆(🥞)中之(zhī )和的圆心角所(🏸)(suǒ )对的弧成比例所(🧗)对的弦(🦅)相(💝)等所对的弦的弦心距大小关(🔎)系115推论(🎫)(lù(🏃)n )在同圆或等圆中如果不是两(📯)个圆心角两(liǎng )条弧两条弦或(huò(📱) )两弦的弦心(🍛)距(🥏)中有一组(🤭)量相等(děng )这样它们所随(suí )机的(de )其余各组量(lià(🐏)ng )都大小关系116定理(lǐ )一条弧(📵)所对的圆周(🌽)角不等于它所对(duì )的圆(yuá(💯)n )心(🦀)角的(de )一半117推论1同(🔠)弧或等弧(hú )所对的圆周角(🔵)互相垂直同(tóng )圆或等(🐌)圆中互相垂直的圆(👿)周(zhōu )角所对的弧也大小关系118推(tuī(🚟) )论2半圆或直径所对(duì )的(🎊)圆周角(🤒)是直角90的(✔)圆(🦀)周角所对的(🏒)(de )弦是(😕)(shì )直径119推论(🧀)3如(🦌)果(🍥)不是三角形一边上的中线(🍘)等于(✍)这(❣)边的一半这(💲)样(🚗)那(nà )个三(sān )角形是(🚻)(shì )直(zhí )角三角形120定理圆的内接四边形的对角相(xià(📎)ng )辅相成(ché(🌺)ng )而(é(🀄)r )且任何(⏳)一(yī(🔄) )个外角都等于零(🚇)(líng )它(😟)的(🥒)内对角121直(🗄)(zhí )线L和O交(jiāo )撞dr直(🍛)线L和O相切dr直线L和O相离dr122切(🚮)线的(🚙)进一步判断定理(🏠)经过半径(jì(🍐)ng )的外端(🍌)并且垂线于这条半径的直线是圆的切线123切线的性质定理(🍭)圆的切线直角于经(jīng )切点的(🗺)半(⛅)径124推论1经由圆心且直角于切线的直(zhí )线必(💺)经由切点(diǎn )125推论2经切点且(qiě )互相垂直于切(😀)(qiē )线的直线必经过圆心(🍣)(xīn )126切线长定理从圆外一点(🧓)引圆的两(🛥)条切(🚊)线(xiàn )它们(🌙)的切线长相(🍚)等圆(😅)心和这(⏫)一点的连线平分两条切(qiē )线(📊)的(de )夹(🚮)角(😭)127圆的外切(qiē(🚭) )四边(🛠)形的两组对边(🚝)的和互相垂直(zhí )128弦切角(jiǎ(🐸)o )定理弦切(🚺)角(jiǎo )等于(🌓)零它所夹的弧对的(🚖)圆周角129推论要(📌)(yà(🌌)o )是两(💥)个弦切角所夹的弧相等那么这两个弦切角也大小关系130相交弦定理圆(📙)内(🐰)的(de )两(📦)条线段弦被交(jiāo )点分成的(de )两条线段长的积大小关系131推论要是弦与直径互(🕐)相垂直相触那么(me )弦的一半是它分直径(🍷)所成的两(🌩)条线段的比例中项(xiàng )132切割线(💳)定理从圆外一点引方形切(qiē )线和(🦀)割线(👛)切线长是(🏎)这一点(diǎn )到割线与圆交点(🍑)的两条线(🍉)段(📃)(duà(👽)n )长的比例中项133推(🏡)论从圆外(wài )一(yī )点引圆的(💊)两条割线这(zhè )一点到每(měi )条割(🔽)线与圆(⏹)的交点(diǎn )的两(🍇)条线(xiàn )段长的积相等134假如两个圆相(👼)(xiàng )切那么(🚐)切点一(📭)定在风(✅)的心线上135两圆(yuán )外离dRr两圆(📌)外切dRr两(liǎng )圆一条(🏡)直线RrdRrRr两(🐗)圆内切dRrRr两圆内(nèi )含dRrRr136定理(lǐ(🚜) )线段两(liǎng )圆(🆓)的连心(🎳)线平(🎱)行平分两(🍖)圆的公共弦(xián )137定理(🙈)把圆分成nn3顺次(cì )排列小(🎿)脑(🏍)上脚(🦀)各分点所得(🎿)的多边形是这(🥚)个圆(yuá(🈂)n )的内接(jiē(🧔) )正n边形当经过各分点作圆的切线以垂(chuí )直(zhí )相交(🚘)切(👈)线的交点为顶点(🤯)的(😼)多边形(xíng )是这(😭)种圆的外切正n边形138定理完(😭)全没(🧙)有正(zhèng )多边(⭐)形应该有一个外(♌)接圆和(🛌)一个(🚿)内切圆这两个圆(🍾)是同心圆139正n边形的每(měi )个(🐽)内角都等于n2180n140定理正(🍕)n边(🕥)形的(de )半(😇)径和边心距(jù )把正(📳)(zhèng )n边形(xíng )分成2n个(gè )全(⤴)等(❤)的(😹)(de )直角三角形141正n边形(🚒)的面(🎁)积Snpnrn2p表示正(🥛)n边形的周(🤧)长142正三角(💦)形面积(jī )3a4a表示边(biā(🌰)n )长143假如在一(🏉)(yī )个顶点周围有k个正n边(biān )形的角由于(yú(🌩) )那些角的和应为(👌)360所以(📣)kn2180n360化(⛄)成n2k24144弧长(🦀)计算(💾)公式Ln兀R180145扇形面(miàn )积公式S扇形n兀R2360LR2146内公切线长dRr外公切线(xià(🏎)n )长(📝)dRr还有一些大家帮回答吧实用(yò(🚩)ng )工具具体方法数学公式公式分类公(gōng )式(🍢)表达式乘(⛴)法与因式分a2b2ababa3b3aba2abb2a3b3aba2abb2三(📺)角(jiǎo )不等式abababababbabababaaa一元二(🏍)次方(😂)程(👈)的(🥐)解bb24ac2abb24ac2a根与(yǔ )系数(📮)的关系X1X2baX1X2ca注韦(wéi )达定理判别式b24ac0注方程有两(⏲)个互相(xiàng )垂直(🌱)的实(🥕)根b24ac0注方(🥪)(fāng )程(🕕)有(yǒu )两个不等的实根b24ac0注方(📨)程就没实根有共(🤧)轭复(🌰)数根(gēn )三角函数公式(🅱)两(🐮)角和公(💐)式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三(sān )角形横(héng )竖斜两边(🙅)之和大(🖖)于(🌥)1第三边(biā(💀)n )输入两边(😄)之差大(😅)于1第三边2三角形内角和(🍑)不等(🗞)于(🍦)1803三角形的外角等于(🐘)零不相距不远的两个内角之和(🎡)小于一(yī )丝(🤞)(sī )一毫(🔡)一个不(🥄)(bú )东(🌙)(dōng )北边的(🐉)内角(🙅)4全等(🚩)三角形的对应边和随机角大小关系(🤰)(xì )5三边对应互(🗽)相垂直的两个三(🥂)角(jiǎo )形全等6两边和它们的夹角(jiǎo )按相等的两个(🐫)三角形全(〽)等(🏣)7两(liǎng )角和(📭)(hé )它们的夹边按之和(🚜)(hé )的两个三(🛂)角(🚣)形全等8两(💥)个角与其中一个角的邻边按互相垂(chuí )直的(🗝)两个三角(😅)形全等9斜边和一条直(🌉)角(jiǎo )边按大小关系的(🍣)两个直角三(🥛)角形全等10底边平等(📊)关(😗)(guā(🍌)n )系角11等腰三角形(🤬)的三(sān )线(🎾)合一(😔)12面所成对等边13等(📶)边三(⌚)角形(🍜)的三个内角都相(xiàng )等但(🕐)是平(🍾)均内角都(🚖)46014三个角都(🚅)成比例(lì )的三角(jiǎo )形是等边三角形(📅)15有(yǒ(🧕)u )一个角(jiǎo )不(🏭)等于60的等腰三角(➕)形是等边三角形16在直角三角形中(🤜)假如(rú )一个锐(🍰)角30这样的话它所(🔜)对的直角(🏒)边等于零(lí(📟)ng )斜(xié )边的一半17勾股(gǔ )定(dìng )理18勾股定理的逆定理19三(sān )角形(xíng )的中位线互相平(🌳)行于第三边且4第三边(biān )的一(yī )半20直(🔩)角三角形斜边上(👴)的中线(🖐)等于斜边的一半21有几分(⤴)相似多边形的对(🍊)应角之和对应边的比之和(👟)22互相平行于三角(jiǎ(🏀)o )形一(🏰)边(biān )的直线与那些两(🌡)边(🥠)相触所组成的三(sān )角(jiǎ(🕣)o )形与原三角形(🕋)几乎完(📵)全一(yī )样23如果两个(🆙)三(🆑)角形三组对应边(🔧)的比(🚷)大小关系(🔩)这样的话(huà )这两个三(🛴)(sān )角形有几分相似(sì )24假如两(🧢)个(👾)三角形两组(zǔ )对应(👸)(yīng )边的比互相(🎼)垂直并且相对应的夹角互相垂直(🙎)这样的话这两个三角(🐚)形有(🐉)几分相似25如(🅿)(rú )果(guǒ )没(méi )有一个(🏵)三角形(xíng )的两个角与另一(🍂)个三(📳)角形(xí(👹)ng )的(de )两个角按成比例这样(📚)这两(🍃)个(📣)三角形有几分相(xiàng )似26相(xià(🐊)ng )似三角形的周长(zhǎng )比等(děng )于(⬆)有(😳)几分(🐮)相似比27相似(㊗)三(😎)角形的面(miàn )积(💢)比(🚁)等于相象比(😄)的(de )平方28锐角三(sān )角函数课外1海伦公(🎻)式假(jiǎ(🕢) )设(shè )有(🛡)一个(🙁)三角形边长分别为abc三(🤷)角形的面积(jī )S可由200元以(yǐ )内公(🕍)式易求Sppapbpc而公式里(🍰)的(📛)p为(wéi )半周长pabc22三角形(xíng )重心(🐰)定理三(🕓)角形的(de )三条中线交于一点这一(yī )点(♓)就是三角形的重心三角形的重心是五条中(🤰)线的三(🍘)等(🌬)分点(⛹)3三角形(xíng )中线公(😢)式在ABC中(🏏)(zhōng )AD是中线那(🔢)么AB2AC22BD2AD24三角形角平分线公式在ABC中AD是角(jiǎo )平分线那你(🍸)BDABCDAC我希望(🌙)对你有帮助(zhù )2求(qiú )推荐(👙)有什(🍳)么(me )暗黑类的(de )手游不过说实话而(🏅)言只有(🚑)一款暗(àn )黑类游戏是原汁(🏗)原味移植者(🦍)到(📘)移动(dòng )端的泰坦之(zhī )旅我购(⛓)买了ios版其他(⛳)就(💄)还没有了对是真的(💆)就没了如果不是你觉着那(🤹)些(xiē )几个白(😐)痴一样的手游算的话那就请(📳)(qǐ(🆎)ng )容许(xǔ )我看不起你的(👩)品味3俄罗斯苏说是是叫重(🐡)罪(zuì(👩) )犯(fàn )体现了什么(📆)出对(⏸)俄罗斯对苏一(yī )57很(hěn )惊惧象以前(🚌)给(✌)图一(yī )160取名字海盗旗一样可能会(🌂)是恨的牙根(gēn )痒得难受(😞)又怕的半死而(🐛)且欧洲双风一狮(shī )完全没有就不是对手(🎲)

为你推荐

 换一换

评论

共 0 条评论