简介

欧美sss在线完整版6
6
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:蔡敏瑞/李秀晶/
  • 导演:大卫·冯金诺斯/斯特凡·冯金诺斯/
  • 年份:2015
  • 地区:泰国
  • 类型:动作/谍战/言情/
  • 时长:内详
  • 上映:未知
  • 语言:印度语,日语,英语
  • 更新:2024-12-20 13:45
  • 简介:1三角形(xíng )解方(fāng )程的计算(🤗)公式2求推荐有(yǒ(🔪)u )什么暗黑(🚗)类(🖼)的(de )手(shǒu )游(yóu )3俄罗(🍴)斯苏(🧖)1三角形解方程的计算公(gō(🕕)ng )式(shì(📫) )1过两点(diǎn )有且(💁)只有(🌧)一(✍)条直线2两点互相间(jiān )线(xiàn )段(🆔)最短3同角或角的的补角成比(💼)例4同(🐤)角或(🤘)等角的(de )余角(👰)相等(děng )5过一点(diǎn )有且唯有(yǒu )一条(🏬)直(⛱)线和(🕕)(hé )试(shì )求(qiú )直线垂线6直线外一点与直线上各点(🎹)连(👿)(lián )接到的所有(🍗)线(👳)段(🤔)中垂线段(🏐)最晚7互相(🛺)垂直公(🚜)理经由直线(🚧)外一点有且(🙇)只(🥐)有一条直线与这条直线(👏)互相垂(🌹)直8假如两条直线都和第三条直线(😐)互相(👓)垂(🔯)直这两条(⬜)直线(xiàn )也(👤)互想(xiǎ(⛸)ng )垂(🥢)直9同位角成比例两直线互相垂直(🚀)10内(🎈)错角之和两直(zhí )线平行(🔭)11同旁内(🏤)角互补两直线互相垂直(🌹)12两(liǎng )直(🛅)线(🌤)互(🤙)相(🍉)垂直同位角(♋)大(🥔)小(xiǎo )关系13两直线垂(🤹)直于内(nèi )错角互相垂直14两直线互(🚒)相平行同(💹)旁(🙈)内角(🧖)(jiǎo )相(😇)补15定理三角形左边的和为0第三边16推论三角形(🧐)(xíng )两(🖼)边的(de )差(🦓)大于第三(😟)边(🛺)17三(👚)(sān )角形内角和定(😡)理三角形三个内角(🌍)的和418018推论1直角三角形的两个锐角互余19推(tuī )论2三(🔔)角形(👓)的(🚾)一个外角等于和它不(bú )毗邻的两(😖)个内(🤦)角的和20推论(🧣)(lùn )3三角形的(🌅)一个外角大于任何一点一个(➿)和它不垂(chuí(📋) )直相交的内角21全等三(sān )角(😕)形的对应边随机角(🎙)(jiǎo )大小关系22边角边(🤥)公理SAS有(🐚)两边和它们(men )的夹角对(🥓)(duì )应成比例(lì )的两(👦)个三(sā(💴)n )角形全等23角边角公理ASA有两角和它们的夹边填写之和的两个三(📈)角(🚹)形全等24推论AAS有两角和其(⛩)(qí )中一角的对(⏰)边(🔋)随(suí )机之(zhī )和的两(liǎng )个三(🛰)(sān )角(💃)形全(quán )等25边边(biān )边公(gōng )理(lǐ )SSS有三边填写之和的两个三(➰)角形全等26斜边(🔷)直角边(📁)公理(🎏)HL有斜边和(hé(🚇) )一条直(🎦)角(⬅)(jiǎo )边(biān )填写(🎁)相等的两(🏩)个(gè )直角三角形全(🚼)等(😱)27定理(lǐ )1在(🚧)角(🛑)的平分(fèn )线上的点到(🔯)这(🎎)样的角的两边的距离大小(xiǎo )关系28定理2到(😝)一个角的两边的距离是一样的的(📸)(de )点在这种角(⏬)(jiǎo )的平(🔳)分线上29角(🤪)的平(pí(🦍)ng )分线(🍪)是(shì )到角的两(liǎng )边距(🏫)离互相垂(chuí )直的所(🔻)有点的(👲)集(🍙)合30等腰三角形的性质(🌬)定(dìng )理等腰(yā(⛓)o )三角形(🌆)的两个底(dǐ(🕞) )角大小关系即(🙋)等边不(🧜)对(🚀)等角(🔦)31推(😴)(tuī )论(🐴)1等腰三(🕐)角形顶角的平分线平分(🍊)底边但(📆)是垂直于底边32等腰三角形的(de )顶角(🔞)平分线(🐻)底边上(😊)的中线和底边上(🧟)的高一(🍞)起平(🌩)行的线33推论3等(🙇)边(🧓)三角形(🎹)的各角(📙)都成比(bǐ )例(🏊)但是每一(yī )个角都(🌎)不等(🚒)于6034等腰(yāo )三角(🚾)形的(🏥)可以判定定理如果(🚂)不是一个三(🤧)角形有两(🍆)(liǎng )个角成(🤘)比(🌦)例这样(🚱)的话(🌶)这两个(🎗)角(🔌)(jiǎo )所对的边也成比例角(💡)的平等关系边35推论1三(📤)个角都成(🍕)比例的三角形是(shì )等边三(🕙)角(🤐)形36推(😘)(tuī )论2有一个角不(bú )等于(yú )60的等腰三角(🗣)形是等边三角(🍊)形37在直角(jiǎo )三(sān )角形中如果一个锐角不(🛳)(bú )等于30那么它所对的直角(jiǎo )边(🔊)等于零斜(xié )边的一半38直角三角形斜边(🌨)上(🍱)的中(💑)线(🌒)等于(👸)斜边(biān )上的一(yī )半39定理线(🧥)段直角平分线(xiàn )上的点和这(💼)条线段两个端点(🚷)的(🅾)距离成比例40逆定理和一条线段两个端点距(➰)离(⚾)之和的点在这条(⏬)线段的垂(🙈)直平分线(xiàn )上41线(🐳)段的垂直平分线可可以(🌘)表示和线(xiàn )段两端点距离互相(🛳)垂(🚗)直(💧)的所有点的(🎵)集(jí )合42定理1关与(🚓)某条线段对称的(📰)两个图形是全等形43定(🌏)理2假(🏢)如两个图形麻烦(fán )问下某直线对称那就关于(🥀)直线是按点连线的垂直(🐵)平分线(xiàn )44定理(lǐ )3两个图形关(guān )於某直线对(duì )称要是它(🏍)们的对应线段(👛)或延长线交撞那就(jiù )交点在对称轴上(shàng )45逆(nì )定理如果两个图形的对应点上连接(jiē )被同一条直线互相(xiàng )垂直平(píng )分那就这(💩)两(🙍)个图(tú )形跪求这条直线对称46勾股定理直角三角形两直角(jiǎo )边ab的(de )平方(fāng )和等于零斜边c的(🚃)(de )3即a2b2c247勾股定理的(🔋)(de )逆定理如果没有三(💡)角(🔐)形的三(🕎)边长abc有关系(xì )a2b2c2那你这种三(🛶)角形(💫)是直角三角形(🌳)48定理(lǐ )四边形的(de )内角(📏)和等于零(🏸)36049四边形的外角和(🐃)(hé )36050n边(🐯)形(😼)内角和定理(🎟)(lǐ )n边(🌵)形(🗳)的(🍨)内角的和(📹)n218051推论横竖斜多(duō )边(🎌)合作的外角和等于零36052平(🌲)行四边形性质定理(lǐ )1平行四边(🏘)形的对(duì )角相(xiàng )等53平行四边形性质定理2平行四边形(xíng )的对(duì )边互(🤫)相垂(chuí )直54推论夹在两条(🥐)平行(💢)线间的垂直于(⏺)线段互相垂(➿)直55平行四边形性(xìng )质定理3平行四边形(📑)的对角线(xiàn )一起平分56平行四边形进(🐈)一步判断定理1两(🗺)组(😑)对角分别成比(bǐ(🛣) )例的四边形(💇)是平行(🤲)四边形57平(píng )行四边形进一(yī(🦓) )步(bù )判断定理2两组(zǔ )对边分别互相垂直的(de )四边形是(☝)平(pí(❓)ng )行(🍊)四边形58平行四边形直接判断定理3对角线互(🌠)(hù )相平分的四边形是平(🚏)行四边(biā(♌)n )形59平行四(🐬)边形不能(néng )判断定理(🌜)(lǐ )4一组对边(🐰)垂直之(zhī )和的四边形是平行四边形60平行四边形性(🎼)质定理1矩(jǔ(✅) )形的(😈)四个角大都直角(🐢)(jiǎo )61平行(háng )四(sì )边形性(xìng )质定(🏛)理2平(píng )行四边形的(de )对角线相等62四边形(📍)(xíng )可以判(pàn )定定理1有三个角是直角的四边形(xí(💹)ng )是(💘)(shì )三角形63三(🦍)角(🚫)形不能判断(📙)定理(♓)2对(duì )角线互相垂直(🛄)(zhí )的平行(🐒)四边(biā(⛸)n )形(🥋)是四边形64半圆性质(🌟)定(dìng )理1菱形的四(sì )条边都(🦕)之和(🍴)65扇(🗽)形性(xìng )质定理2菱形的对角线互想垂线而且每一条对角线平(⚽)(píng )分(🌁)一组(🕓)对角(🌅)66棱形面积对角线(😁)乘积(jī )的一(♎)半即Sab267菱形进一步判断定理(lǐ )1四边(🎐)都相等(📉)的四(sì )边(😬)形是(😷)菱形(xíng )68菱(🔊)形直接判断(duàn )定理2对角线一起垂(chuí )线的平行四边形(xíng )是(shì )菱形(🤳)(xíng )69正方形性质(🔃)定理(lǐ )1正(zhèng )方(🗿)形的四个角(📅)(jiǎo )是直角四条边(🍳)都(dōu )互(hù )相垂直70正方形性质定理(lǐ )2正方形的(🧡)两条对角线成比(bǐ )例(🔁)而且一起互相垂(chuí )直(🐺)平分每条对(📽)角(jiǎo )线平(píng )分(💄)一组对角71定(dìng )理(🌫)1麻烦(😅)问下中心对称(👊)的(🤤)两个图形是全等的72定理(lǐ )2关(🤳)与中心对称(chēng )的两个图(🛐)形对(🧠)称中心点(🚺)连(🚠)线都在对称点中心并且(🆘)被对称中心平分73逆定理如果不(🌽)是两个图形(🛋)的对(🕸)应点(diǎn )连(🐭)线都经由(🌰)某一点并(🤝)且(🅱)被这一点平(píng )分那你这两个图形关于这(zhè )一(yī )点(📑)对(🚠)称(📴)74等腰三角(jiǎ(😽)o )形性质定(dìng )理(🐯)(lǐ )直(👏)角梯形在同(🧓)一底上的两个角互相垂直75等腰三角形(🤢)的两条对角线(🔡)相等76等(děng )腰梯形(xíng )进一步判(🏬)断定理在同一底上的两个角大小(👬)关系的梯(tī )形是等(👍)腰直角三角(😛)形77对角(⛪)线大小关系的梯形是平行四边(💝)形78平行(háng )线等分线段定理(🚖)假如一(yī )组(🐀)平行(háng )线在(⏺)一条直线上截得的线段大小关系这样在别的直线(xiàn )上截得的线段也互相垂直79推论1经过梯形(😉)一(yī )腰的中点与底(🕗)垂直的直(🚔)线必平分(fèn )另(🏟)一腰80推论(😭)2当经过三(✏)角(jiǎo )形(🎺)一边(💆)的中点与另一边垂直于的(🌻)直线必平分第三(🚌)边81三角形中位线定理三角形的中(🥚)位线(xiàn )平行于第三(sān )边(〽)(biān )并且(qiě )4它的一半(🙇)82梯形中位(😬)线定(dìng )理(🎐)梯形的中位线平行(🖥)于两底并(😧)且4两(🔥)底和的一半(🅱)Lab2SLh831比例的基本是性(xìng )质(🖖)如果abcd那就adbc如果(🚞)adbc那(nà )你abcd842合(hé )比性质如果没有abcd那(nà )你abbcdd853等比性质要是abcdmnbdn0那么(me )acmbdnab86平行(háng )线(xiàn )分线段成(🚀)比例定理(🐻)三(💾)(sān )条(tiá(🌱)o )平行线截两条直(zhí )线所(🤬)得的(✂)对应线段成比(📂)例87推(tuī )论(lùn )互相垂直(zhí )于(👂)三角形一边(🐰)的直线截(jié )那些(🚾)两(👎)边或(huò(🆚) )两边的延长线所得(dé )的对应(😕)线段(🦖)(duà(😡)n )成比例88定(🤺)理要是一条直线截三角形的两边或两边(🎁)的延长线所(📿)得的对(🍂)应(🛸)(yīng )线段成比例那你这条直线互相垂直于三角形的第三(sān )边89平行(háng )于(yú )三角形的一边但(🐜)是(💖)(shì )和(🆒)其他(🚙)两边相交的直线所截得(🐆)的三(🕖)角(😲)形的三边与原三(📓)角形三(🤳)边不(🥜)对应成(chéng )比(😠)例90定理互相平(píng )行于(💗)三角形一边的(🌸)直线和其他两边(biān )或两边的延长线相触所构(gòu )成的三角形与原(yuán )三(🏎)角形(👶)几乎完全一(👇)样91相(xiàng )似三角形直接判断(➿)定理1两角不对应之(🙁)和两三角形有几分(🏆)相似ASA92直角(🐼)三(sān )角形(🃏)被斜(xié )边上(🍯)的高(⬆)分成(🚬)的两(♊)个直角三角形和(🎪)原三(⛔)角形相似(🔘)93进一步判断定理2两边对应成比例且夹角之和两三角形(🍭)相象(🕴)SAS94进(🗜)一(yī )步判(🌹)断定理3三边填(📗)写成(😙)比(🍎)例两三(sān )角形(📗)相象SSS95定理假如(🎩)一个直角(jiǎo )三角形(xí(🤔)ng )的斜边和(hé(🛫) )一条(tiáo )直角边与另一(yī )个(🤸)直角(🌤)(jiǎo )三(sān )角(jiǎ(💷)o )形的(de )斜边和一条(tiá(🐱)o )直(🧝)角边随机成(🍁)比例那就(🕰)这两个直角(🐜)三角(jiǎo )形有几分(👞)相(xiàng )似96性质(zhì )定(dìng )理1相似(sì(💳) )三角形按高(gāo )的(🍫)比按中线(xiàn )的比与对应角平分线的比(🆘)都几乎一样(👪)比97性质(♑)定理2相似三角形周(zhōu )长(🐣)(zhǎng )的比等于几乎完全一(🤸)样比(bǐ )98性质定理3相似三角形面(🍟)积的比(🆒)等于相似比的(de )平(píng )方99正二(🌒)十边形锐角的正弦(🏏)值(🤹)它的余角的余弦值任意锐角的余弦值等于(yú )它的余角的正(zhèng )弦(xián )值100任意(yì )锐角的正切值等于它(tā )的余角(🐧)的余切值任意锐(ruì )角(🥁)的(🛍)余(🎞)切(qiē )值等于它的余角的正切(qiē )值101圆是定点的(de )距(🍥)离定长的(⛱)(de )点(diǎn )的集(🆚)合102圆(🦑)的内部也可以代入(🚆)是圆心的距离小于等于半径的点的集合103圆的外部是可以(yǐ )n分之(🦋)一是(shì )圆(yuá(🐅)n )心(xīn )的(📬)距离大于(🔛)0半径(📨)的(🔽)点的(🎿)集(jí(🦂) )合104同圆或等(💴)圆的半(🎪)(bàn )径相等105到定点的(⬅)距(♿)(jù(😈) )离定长(zhǎng )的点的(🤳)轨迹是以定点为圆心定(👾)长(zhǎng )为半径(🎶)的圆106和(hé )设(🛷)线段两个端点的距离互相垂(chuí(🕥) )直的点的轨迹是着条线段(🥗)的垂直平(píng )分线107到已知(🔋)(zhī )角(💍)的两边距离互相垂(👜)(chuí )直的点(🐔)的(de )轨迹是这个角的平分线(🎙)108到两条平(🐫)行(🎟)线距离相等的点的轨迹是和这两条平行线互相(🌆)垂(chuí )直且距(🎒)离之和的一条直线109定(🚿)理在的同一直线上的三(👩)点可以(yǐ )确定一个圆110垂(😴)径定理互(🧚)相垂(chuí )直于弦(xián )的(♋)直径平分这条弦而且(📝)平分弦(xián )所对(⛔)的(🤛)(de )两条(🍐)弧111推(🥀)论1平分弦不是什么直(zhí )径的直径互相(xiàng )垂直(👓)于弦因此平分弦(🎊)所对的两条(🔞)弧(🔐)弦的垂直(zhí(🌚) )平分线当经过(⌛)圆心(⬆)另(🦊)外平分弦所对的两(liǎng )条弧平分弦所对的一条弧的直(zhí )径平行平分弦另外平分弦(😭)所对的另一(🆑)条(🍨)弧112推论2圆的两条(tiá(🏀)o )垂直于弦所(🍦)夹的弧成比例113圆是以圆(📑)心(🛐)为对称(🧝)中心的中心对称图形(🥩)114定(dìng )理(😴)在(➰)同圆或等圆中之和的圆心角所(suǒ(🆕) )对的(🆔)弧成比例所对的弦相等所对的(👾)弦(😽)的弦心距(jù )大小关系(🆒)115推论(🐡)在同圆或等圆中(zhōng )如果不是两(liǎng )个圆(⏰)心(🌙)角两条弧(🐝)两(liǎ(🔐)ng )条(🚃)弦或两(liǎng )弦(🏕)的(🍜)弦心距中有一组(🥤)量相等这(zhè )样它(🖌)们所随机(jī )的(de )其余(✔)各组量(liàng )都大小关系116定理一条弧所(💹)对的(de )圆周角不等(🏵)于(yú )它所对的圆心角的一(🐘)半117推(❄)论1同弧或(huò )等弧所对的圆周角互相垂直同(tóng )圆或等圆(🏆)中互(hù )相垂直的圆周角(👩)所对(🈶)的弧(🏹)也大小(📍)关系118推(tuī(🐾) )论(🏚)2半圆或直径所对的(de )圆周角是直角(🎨)90的圆(👰)周角(🚀)所对的(de )弦是(🖲)直(zhí )径119推(tuī(👿) )论3如果不(🔡)是三角形一边上的中(📮)线等于(❎)这(💑)边的一半这样那(🤵)(nà )个三角形(xíng )是直角三角形120定理圆的内接四边形的(💞)对(🍀)(duì )角(jiǎo )相(😂)辅相(🤝)成(😽)而且任何一个外角(👞)(jiǎo )都等于零它(tā )的(de )内对角121直线L和O交撞dr直线L和O相切dr直(🦑)线L和O相(🚤)离dr122切线(xiàn )的进(👼)一步判断定(🎏)理经过半径(🕳)的(🤟)外端并且垂线(xiàn )于这(📑)条(tiáo )半(♎)径的直线(xià(🥜)n )是圆的切线123切线的性(👙)质定(🍱)理圆的切线直(📴)角于经切点的(👲)(de )半径(🛴)124推论1经由圆心且(🕔)直角(🐞)于切线(🎒)的直线(💀)必经由切点(☕)125推(tuī )论2经切点且互相(xiàng )垂直(💳)于切线的直线必经过圆(🍗)心(xīn )126切线(🎓)长(zhǎng )定理从圆外一点(😋)引圆的两条(tiá(🕣)o )切线它(tā(👲) )们的切(🏞)线长(🕙)(zhǎng )相等圆心和这(🎹)一点(💇)的连(✌)线平(✈)(píng )分两条切线(🍔)的夹角(📗)127圆的(🚚)外切四(🦒)边形的(😬)两组对边的和互相(💦)(xiàng )垂直128弦切角定理弦(🤘)切(🔋)角等于零它所夹的弧对的圆周角129推论要是两个弦(🕙)切(qiē )角所夹(jiá )的弧相等那么这两个(🚁)(gè )弦切角(🏃)也大小关系130相(😚)交弦(xiá(👋)n )定理圆(⬅)内的两(👃)条线段弦(🔋)被(🥋)交点分成(⛹)的两条线(🐪)段长的积大小关(😙)系131推论要是弦与(🔛)直径互相垂直相触那么弦的一半(bàn )是它分直径(🕴)(jìng )所(suǒ(👙) )成的两条线段的比(bǐ )例(🖱)(lì )中项(💥)132切割(🍛)线(xiàn )定(dìng )理从圆(💿)外一点引方形切线和割(☔)线切线长是这一点到割线(➖)与圆(🚪)交点的两(🧦)条(tiáo )线段(🔽)长(🛑)的比例中项133推论从(🤮)圆外一点引圆(📻)的(😐)两条割线这一点到每(měi )条割线与(yǔ(🍑) )圆的(🔉)交点(🎹)的(de )两条线段长(📥)的(🚩)积相等134假如两个圆相切(qiē )那么切点一定在风(fēng )的心线上135两圆外离dRr两(liǎng )圆外(🏯)切(👟)dRr两圆一条直线RrdRrRr两圆内切dRrRr两圆(🌽)内(🥒)(nèi )含dRrRr136定理线(📳)段两圆的连(🧓)(lián )心线平行平分两圆的公共弦137定理(lǐ )把圆(yuán )分成nn3顺次排列小脑上脚各分点所得的(de )多边形是这个圆的内(⏰)接正(🎧)n边形当经过各分点作圆的切线以垂直相(🕡)交切线的交点为顶点的多边形(xíng )是这种圆的(de )外切正(zhèng )n边形138定理(lǐ )完全没有(yǒu )正(💯)多边(🥪)形(xíng )应(yīng )该有一个外接圆和一个(😘)内切圆这两个圆是同心圆139正n边形的每个内(💂)角(🆑)都等于(yú )n2180n140定(dìng )理正n边形的半(bà(🌷)n )径(jìng )和(📓)边心距把正n边形分成(💬)2n个全等的直角三角形(🙅)141正n边(biān )形(xíng )的面积(❄)Snpnrn2p表示正n边形的周长142正三角形面积3a4a表示边长(zhǎng )143假如在一个顶(😲)点周围有k个正n边形的角(🐟)由(🙏)于那些角(jiǎo )的和应为360所以kn2180n360化(🥤)成n2k24144弧长计算(🛰)公式Ln兀R180145扇(🎊)形面积公(🎉)式S扇形n兀R2360LR2146内公切(qiē(🧢) )线(xiàn )长dRr外(😙)公切线长dRr还有一些大家帮回答(💺)吧(🤢)实用工具具体方法数学公式(shì(👉) )公式分类公(gō(🐳)ng )式(shì )表达式乘法与(yǔ )因式分(🔐)a2b2ababa3b3aba2abb2a3b3aba2abb2三角不等式abababababbabababaaa一元二次方程的(🐶)解bb24ac2abb24ac2a根(gēn )与(yǔ )系数的(de )关(guān )系X1X2baX1X2ca注韦达定(dìng )理(lǐ(🥥) )判别(🎇)式b24ac0注(zhù(🈂) )方(💙)程有两个互相垂直的实(⛺)根(🎈)b24ac0注(zhù )方程有两(🎴)个不等的实根b24ac0注(zhù )方程就(jiù )没实根有共(😧)轭复数根三角函数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课(😕)内1三角(jiǎo )形横竖斜两边之和大(🕒)于1第三边输入两(liǎng )边之差大于(🎧)1第(dì(🗓) )三边2三(sān )角形内(🐴)(nè(😛)i )角和不等于(🦖)1803三角形(❤)的外(wài )角等于零不相(xiàng )距(jù )不(📲)远的两个内角之和小(🦒)于一丝一毫一个不东北边的(🚀)内角4全等三(👑)角形的(🚔)对(duì )应(🔇)边(🤢)和随(suí )机(🏈)角大小关系(xì )5三(sān )边对应互相(🤘)垂直(🐦)的两(😅)个(gè(🛥) )三角(jiǎo )形全(🔤)等6两边和它们(🤒)的(🔕)夹角(🦄)按(👬)相等的两个三角形全等7两角和它(tā(🍜) )们的夹(jiá )边按之和的(😅)两个(gè )三角形全等8两个角与(🆗)其中一(🔑)个(gè(🚿) )角的(🍤)邻边(👖)(biān )按互相垂(🏼)直的两(⬆)个(gè )三角形全等9斜边(📶)和一条直角边按(🆚)大(dà )小关系的两个直角三角形(xíng )全等10底边平(🗣)等关系角11等腰三(sān )角(✏)(jiǎ(🏿)o )形(📥)(xíng )的三线合一12面所(😑)成对等(děng )边13等(🖲)边(biān )三(❗)角形(xíng )的三个内角都相等但是平均内角(😍)都46014三个角都成(🚼)比例的三角(⛎)形是(shì )等边三角形15有一个角不等于60的等(🎅)腰(🍀)三角(🍻)形是等边三(🏢)角形(😌)16在直角(jiǎo )三角形中假如一个锐(🚔)(ruì )角30这(zhè )样的话它所对的直角边(biān )等于(😭)零斜(📕)(xié )边的一半17勾股定理(🏂)(lǐ )18勾(🚆)股定理的逆定理(lǐ )19三(🥖)角形的中位线(🤤)互相平(🏜)行于第(😃)三边且4第三边(🚙)的(de )一(🐿)半20直角三(🍳)角(❕)形斜边上的中线等于斜边的一半21有几(🎼)分相似(sì )多边形的对应角之(🖼)和对应(🚢)边的比之和22互(hù )相平行于三角形一边(🚧)的直线与(yǔ )那些(🕘)两边相触(⛹)所组(🎖)成(👾)的(de )三(🎢)角形与原三角形几乎完全一样23如果两个(👙)三角形(💂)三组(🐳)对应边的(🍷)比大小关系(xì )这样的话这两个三角形(🌷)(xíng )有几分相似(sì )24假(😗)如两个三角形两组对应(yīng )边的比互相垂(🌰)直并(bìng )且相对应的夹角互相(🔇)(xiàng )垂(🌫)直这样的话这两(🧖)(liǎng )个三角形有几分相似25如果没有一个三角形的两个角(👅)与另一个三(🚑)角形的两(liǎng )个角按成比(🍷)例这样(🤭)这(🛐)两(liǎng )个三(sā(🏊)n )角形有几分相(🛰)似26相似三角(🦑)形(🗡)的周长比等于有几(🍉)分相(🌑)似比27相似三角形的(🍏)面积比等于(🈳)(yú(💡) )相(👓)(xiàng )象比(bǐ )的(🛥)平(💻)方28锐角三角(🤦)函数课外1海(hǎi )伦公式假设有一个三角(🔪)(jiǎo )形边长分(fèn )别(bié )为abc三角形的(de )面积(🏬)S可由200元(💭)以内公式易求Sppapbpc而公式里的p为(📄)半周(zhōu )长pabc22三角(⏰)形(🍳)重心定(🕝)理(🕹)三角形的(♌)三条中(💬)线交于一点这一(yī )点就是三角(jiǎo )形的(🦉)重心三角形的重(chóng )心是五(🔷)条中线的三等分(fèn )点3三角形(🐧)中线公(🛃)式在ABC中AD是(📙)(shì )中(zhōng )线那么AB2AC22BD2AD24三(😡)角形角(jiǎo )平(👺)分线公式在ABC中AD是角(jiǎo )平(🥟)分(fèn )线那你BDABCDAC我(wǒ )希望(wàng )对你(💡)有(🧞)帮(bāng )助(🎺)2求(🕸)推荐(🐫)有什么暗黑类的手游不过说(shuō )实话而言只(zhī )有(🔹)一款暗黑类游(⛓)戏是原汁原味移植(📻)者到移动(dòng )端的(👂)(de )泰坦之旅我(🛴)购买(mǎi )了(👄)ios版其他就还(🔚)没(🚀)有(yǒu )了对是真(🎤)的(🖋)就没(💦)了(💕)如(rú )果(💷)不是你觉着(zhe )那些(🧚)(xiē )几个白(🌩)痴一样(yàng )的(de )手游(🌰)算的话(🍤)那(🔢)就(jiù )请容许我看(⛓)不起你的(🌠)品味3俄罗斯苏(sū(➿) )说是是叫(📋)重罪犯体现了什么(⛽)出(🙄)对俄罗斯对(🐃)苏(👽)(sū )一57很惊惧象以前(✴)(qiá(😢)n )给图一(yī(🈚) )160取名(míng )字(👟)(zì )海盗旗一(🌵)样可(kě )能会是恨的牙根痒得难受又怕的半(🖼)死(🎣)而且欧(ōu )洲(🏁)双风一狮完(💈)全没有就不是(🔐)对手

为你推荐

 换一换

评论

共 0 条评论